Buy Computational Modeling of Heat Transfer and Visco-Plastic Flow in Friction Stir Welding
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Technology: general issues > Computational Modeling of Heat Transfer and Visco-Plastic Flow in Friction Stir Welding
Computational Modeling of Heat Transfer and Visco-Plastic Flow in Friction Stir Welding

Computational Modeling of Heat Transfer and Visco-Plastic Flow in Friction Stir Welding


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

With a focus to develop a quantitative understanding of the FSW process, a comprehensive three dimensional heat transfer and plastic flow model is developed. The model can predict variables such as temperature and velocity fields and torque based on the given welding parameters like weld velocity, tool rotational speed and axial pressure. It considers tool design dependent spatially variable heat generation rates, deformational work, non-Newtonian viscosity as a function of local strain rate, temperature and the nature of the material and temperature dependent thermal conductivity, specific heat capacity and yield stress. It is shown that the temperature fields, cooling rates, the plastic flow fields and the geometry of the thermo-mechanically affected zone (TMAZ) can be adequately described by solving the equations of conservation of mass, momentum and energy in three dimensions with appropriate boundary conditions and constitutive equations for viscosity. The model is tested for four different alloys: (1) AA 6061-T6, (2) 1018 Mn steel, (3) 304L stainless steel and (4) Ti-6Al-4V which have widely different thermophysical and rheological properties. Numerically computed temperature fields, variations of peak temperatures with FSW variables and TMAZ geometry were compared with the experimental results. Currently, due to unknown parameters in existing transport phenomena based models, the computed temperature and velocity fields and torque may not always agree with the corresponding experimentally determined values and may not show the same trend as experimental results for a range of welding variables. Here, it is shown that this problem can be solved by combining the rigorous phenomenological process sub-model with a multivariable optimization scheme called Differential Evolution. The values of the uncertain model input parameters from a limited volume of independent experimental data which includes temperature measurements obtained using thermocouples and torque measured using dynamometers. This approach resulted in agreement between the phenomenological model and the experimental results with a greater degree of certainty. It is tested for FSW of: (1) dissimilar AA 6061-T6 to AA 1200, (2) 1018 Mn steel and (3) Ti-6Al-4V. Independent thermocouple and dynamometer measurements are also used for validation and verification of results. Improvement in the reliability of the numerical model is an important first step towards increasing its practical usefulness. Also, one of the reasons why current models do not find extensive applications is because they cannot be used to tailor weld attributes. The aim of the present research is to develop a reliable bi-directional model which can find wide use in manufacturing and process control. It is shown that by coupling a reliable model with an evolutionary search algorithm, we can find multiple sets of welding parameters to achieve a target peak temperature and cooling rate in welds. The model is tested for dissimilar welds of AA 6351 and AA 1200. FSW is being increasingly used for dissimilar metal joining. Models are needed to calculate the redistribution of alloying elements when two alloys with dissimilar alloying element contents are joined. The transport and mixing of magnesium from Mg-rich AA 6061 alloy into a commercially pure aluminum AA 1200 was examined experimentally and numerically at various locations in the welded workpiece. The concentration of the solute is measured in transverse cross-sections across the weld-center line at various depths from the top surface of the workpiece. The measurement was done using electron probe micro-analysis (EPMA) of polished transverse-cut...


Best Sellers


Product Details
  • ISBN-13: 9781243590459
  • Publisher: Proquest, Umi Dissertation Publishing
  • Publisher Imprint: Proquest, Umi Dissertation Publishing
  • Height: 254 mm
  • Weight: 404 gr
  • ISBN-10: 1243590459
  • Publisher Date: 01 Sep 2011
  • Binding: Paperback
  • Spine Width: 13 mm
  • Width: 203 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Computational Modeling of Heat Transfer and Visco-Plastic Flow in Friction Stir Welding
Proquest, Umi Dissertation Publishing -
Computational Modeling of Heat Transfer and Visco-Plastic Flow in Friction Stir Welding
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Computational Modeling of Heat Transfer and Visco-Plastic Flow in Friction Stir Welding

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!