Buy A Framework for Efficient Data Distribution in Peer-To-Peer Networks
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Science: general issues > A Framework for Efficient Data Distribution in Peer-To-Peer Networks
A Framework for Efficient Data Distribution in Peer-To-Peer Networks

A Framework for Efficient Data Distribution in Peer-To-Peer Networks


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Peer to Peer (P2P) models are based on user altruism, wherein a user shares its content with other users in the pool and it also has an interest in the content of the other nodes. Most P2P systems in their current form are not fair in terms of the content served by a peer and the service obtained from swarm. Most systems suffer from free rider's problem where many high uplink capacity peers contribute much more than they should while many others get a free ride for downloading the content. This leaves high capacity nodes with very little or no motivation to contribute. Many times such resourceful nodes exit the swarm or don't even participate. The whole scenario is unfavorable and disappointing for P2P networks in general, where participation is a must and a very important feature. As the number of users increases in the swarm, the swarm becomes robust and scalable. Other important issues in the present day P2P system are below optimal Quality of Service (QoS) in terms of download time, end-to-end latency and jitter rate, uplink utilization, excessive cross ISP traffic, security and cheating threats etc. These current day problems in P2P networks serve as a motivation for present work. To this end, we present an efficient data distribution framework in Peer-to-Peer (P2P) networks for media streaming and file sharing domain. The experiments with our model, an alliance based peering scheme for media streaming, show that such a scheme distributes data to the swarm members in a near-optimal way. Alliances are small groups of nodes that share data and other vital information for symbiotic association. We show that alliance formation is a loosely coupled and an effective way to organize the peers and our model maps to a small world network, which form efficient overlay structures and are robust to network perturbations such as churn. We present a comparative simulation based study of our model with CoolStreaming/DONet (a popular model) and present a quantitative performance evaluation. Simulation results show that our model scales well under varying workloads and conditions, delivers near optimal levels of QoS, reduces cross ISP traffic considerably and for most cases, performs at par or even better than Cool-Streaming/DONet. In the next phase of our work, we focussed on BitTorrent P2P model as it the most widely used file sharing protocol. Many studies in academia and industry have shown that though BitTorrent scales very well but is far from optimal in terms of fairness to end users, download time and uplink utilization. Furthermore, random peering and data distribution in such model lead to suboptimal performance. Lately, new breed of BitTorrent clients like BitTyrant have shown successful strategic attacks against BitTorrent. Strategic peers configure the BitTorrent client software such that for very less or no contribution, they can obtain good download speeds. Such strategic nodes exploit the altruism in the swarm and consume resources at the expense of other honest nodes and create an unfair swarm. More unfairness is generated in the swarm with the presence of heterogeneous bandwidth nodes. We investigate and propose a new token-based anti-strategic policy that could be used in BitTorrent to minimize the free-riding by strategic clients. We also proposed other policies against strategic attacks that include using a smart tracker that denies the request of strategic clients for peer list multiple times, and black listing the non-behaving nodes that do not follow the protocol policies. These policies help to stop the strategic behavior of peers to a large extent and improve overall system performance. We also quantify and validate...


Best Sellers


Product Details
  • ISBN-13: 9781243560896
  • Publisher: Proquest, Umi Dissertation Publishing
  • Publisher Imprint: Proquest, Umi Dissertation Publishing
  • Height: 254 mm
  • Weight: 281 gr
  • ISBN-10: 1243560894
  • Publisher Date: 01 Sep 2011
  • Binding: Paperback
  • Spine Width: 9 mm
  • Width: 203 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
A Framework for Efficient Data Distribution in Peer-To-Peer Networks
Proquest, Umi Dissertation Publishing -
A Framework for Efficient Data Distribution in Peer-To-Peer Networks
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

A Framework for Efficient Data Distribution in Peer-To-Peer Networks

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!