Buy Lithography-Driven Design for Manufacturing in Nanometer-Era VLSI
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Technology: general issues > Engineering: general > Lithography-Driven Design for Manufacturing in Nanometer-Era VLSI
Lithography-Driven Design for Manufacturing in Nanometer-Era VLSI

Lithography-Driven Design for Manufacturing in Nanometer-Era VLSI


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Photolithography has been a key enabler of the aggressive IC technology scaling implicit in Moore's Law. As minimum feature sizes approach the physical limits of lithography and the manufacturing process, resolution enhancement techniques (RETs) dictate certain tradeoffs with various aspects of process and performance. This in turn has led to unpredictable design, unpredictable manufacturing, and low yield. As a result, close communication between designer and manufacturer has become essential to overcome the uncertainties of design and manufacturing. The design for manufacturability (DFM) paradigm has emerged recently to improve communications at the design-manufacturing interface and to reduce manufacturing variability. DFM is a set of technologies and methodologies that both help the designer extract maximum value from silicon process technology and solve "unsolvable" manufacturing challenges. Traditional DFM techniques, which include design rule check (DRC) and optical proximity correction (OPC), have been successfully used until now. However, as the extent and complexity of lithography variations increase, traditional techniques are no longer adequate to accommodate the various lithography demands. This thesis focuses on ways to mitigate the impact of lithography variations on design by establishing new interfaces between design and manufacturing. The motivations for doing so are improved printability, timing and leakage as well as reduced design cost. To improve printability, we propose a detailed placement perturbation technique for improved depth of focus and process window. Using a dynamic programming (DP)-based method for the perturbation, the technique facilitates insertion of scattering bars and etch dummy features, reducing inter-cell forbidden pitches almost completely. We also propose a novel auxiliary pattern-enabled cell-based OPC which can improve the edge placement error over cell-based OPC. The technique improves runtime which has grown unacceptably in model-based OPC, while retaining its runtime advantage as well as timing and leakage optimization. The detailed placement framework is also available to allow opportunistic insertion of auxiliary pattern around cell instances in the design layout. Aberration leads to linewidth variation which is fundamental to achieve timing performance and manufacturing yield. We describe an aberration-aware timing analysis flow that accounts for aberration-induced cell delay variations. We then propose an aberration-aware timing-driven global placement technique which utilizes the predictable slow and fast regions created on the chip due to aberration to improve cycle time. The use of the technique along with field blading achieves significant cycle time improvement. DoseMapper technique adopted in advanced lithography equipments has been used to reduce the across-chip linewidth variation. We propose a novel method to enhance timing yield as well as reduce leakage power by combined dose map and placement optimizations. The new dose map is not determined to have the same critical dimension (CD) in all transistor gates, but optimized to have different linewidths. That is, for devices on setup timing-critical paths, a smaller than nominal CD will be desirable, since this creates a faster-switching transistor. On the other hand, for devices on hold timing-critical paths, a larger than nominal gate CD will be desirable since this creates a less leaky transistor. Last, the golden verification signoff tool using simulation-based approach represents a runtime-quality tradeoff that is high in quality, but also high in runtime. We are motivated to develop a low-runtime pre-filter that...


Best Sellers


Product Details
  • ISBN-13: 9781243525192
  • Publisher: Proquest, Umi Dissertation Publishing
  • Publisher Imprint: Proquest, Umi Dissertation Publishing
  • Height: 254 mm
  • Weight: 463 gr
  • ISBN-10: 1243525193
  • Publisher Date: 01 Sep 2011
  • Binding: Paperback
  • Spine Width: 15 mm
  • Width: 203 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Lithography-Driven Design for Manufacturing in Nanometer-Era VLSI
Proquest, Umi Dissertation Publishing -
Lithography-Driven Design for Manufacturing in Nanometer-Era VLSI
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Lithography-Driven Design for Manufacturing in Nanometer-Era VLSI

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!