Buy Channel Estimation and Equalization for Doubly-Selective Channels Using Basis Expansion Models
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Technology: general issues > Channel Estimation and Equalization for Doubly-Selective Channels Using Basis Expansion Models
Channel Estimation and Equalization for Doubly-Selective Channels Using Basis Expansion Models

Channel Estimation and Equalization for Doubly-Selective Channels Using Basis Expansion Models


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

The nature of the wireless channels places fundamental limitations on the performance of wireless communication systems. In addition to the frequency-selectivity characteristics caused by multipath propagation, the high-rate wireless and mobile links often exhibit time-selectivity characteristics caused by the user's mobility, so-called doubly-selective wireless channels. The quality of channel acquisition has a major impact on the overall system performance. Therefore, reliable estimation of doubly-selective channels is well motivated. Equalization is used at the receiver to compensate for intersymbol interference created by multipath propagation and improve received signal quality. Equalizers should be adaptive since the channel is time-varying. In this dissertation, channel estimation and equalization for doubly-selective channels are considered in Chapter 2 (under single input single output models) and Chapter 3 (under multiple input multiple output models), where the time-varying channel is assumed to be well described by basis expansion models (BEM). Our focus is on time-multiplexed training for channel estimation where the training symbols are periodically inserted and use all transmitted power during their transmission. The linear equalization and decision feedback equalization (DFE) of doubly-selective channels modeled via BEMs are introduced in Chapter 4. There has been much interest in designing time-variant serial finite impulse response (FIR) linear and DFE equalizers using complex exponential (CE-) BEMs for equalizers in addition to using CE-BEM for modeling the channel itself. In this dissertation we show that the Kalman filter formulation of the linear equalizer and an alternative formulation of the FIR DFE based on a CE-BEM channel model yields the same or an improved BER at a lower computational cost, without incurring the approximation error inherent in CE-BEM modeling of equalizers. In Chapter 5, an adaptive channel estimation scheme, exploiting the oversampled complex exponential basis expansion model (CE-BEM), is presented for doubly-selective channels where we track the BEM coefficients via a multiple model approach in this dissertation. We propose to use a multiple model framework where several candidate Doppler spread values are used to cover the range from zero to an upper bound, which leads to multiple CE-BEM channel models, each corresponding to an assumed value of the Doppler spread. Subsequently, the well known interacting multiple model (IMM) algorithm is used for symbol detection based on multiple state-space models corresponding to the multiple estimated channels. Orthogonal Frequency-Division Multiplexing (OFDM), a digital multi-carrier modulation scheme, has developed into a popular scheme for wideband wireless communication due to its high spectral efficiency and simple equalization. We extend the optimum time-multiplexed training based channel estimation introduced in Chapter 2 to OFDM systems under doubly-selective channels in Chapter 6. Compared to the traditional frequency-domain training design, the main advantages of time-domain training for OFDM system is that the information symbols are not contaminated by the training symbols as in the frequency-domain training case.


Best Sellers


Product Details
  • ISBN-13: 9781243519689
  • Publisher: Proquest, Umi Dissertation Publishing
  • Publisher Imprint: Proquest, Umi Dissertation Publishing
  • Height: 254 mm
  • Weight: 349 gr
  • ISBN-10: 1243519681
  • Publisher Date: 01 Sep 2011
  • Binding: Paperback
  • Spine Width: 11 mm
  • Width: 203 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Channel Estimation and Equalization for Doubly-Selective Channels Using Basis Expansion Models
Proquest, Umi Dissertation Publishing -
Channel Estimation and Equalization for Doubly-Selective Channels Using Basis Expansion Models
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Channel Estimation and Equalization for Doubly-Selective Channels Using Basis Expansion Models

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!