Buy Supervised and Unsupervised Pridit for Active Insurance Fraud Detection.
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Business and Economics > Finance and accounting > Accounting > Supervised and Unsupervised Pridit for Active Insurance Fraud Detection.
Supervised and Unsupervised Pridit for Active Insurance Fraud Detection.

Supervised and Unsupervised Pridit for Active Insurance Fraud Detection.


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This dissertation develops statistical and data mining based methods for insurance fraud detection. Insurance fraud is very costly and has become a world concern in recent years. Great efforts have been made to develop models to identify potentially fraudulent claims for special investigations. In a broader context, insurance fraud detection is a classification task. Both supervised learning methods (where a dependent variable is available for training the model) and unsupervised learning methods (where no prior information of dependent variable is available for use) can be potentially employed to solve this problem. First, an unsupervised method is developed to improve detection effectiveness. Unsupervised methods are especially pertinent to insurance fraud detection since the nature of insurance claims (i.e., fraud or not) is very costly to obtain, if it can be identified at all. In addition, available unsupervised methods are limited and some of them are computationally intensive and the comprehension of the results may be ambiguous. An empirical demonstration of the proposed method is conducted on a widely used large dataset where labels are known for the dependent variable. The proposed unsupervised method is also empirically evaluated against prevalent supervised methods as a form of external validation. This method can be used in other applications as well. Second, another set of learning methods is then developed based on the proposed unsupervised method to further improve performance. These methods are developed in the context of a special class of data mining methods, active learning. The performance of these methods is also empirically evaluated using insurance fraud datasets. Finally, a method is proposed to estimate the fraud rate (i.e., the percentage of fraudulent claims in the entire claims set). Since the true nature of insurance claims (and any level of fraud) is unknown in most cases, there has not been any consensus on the estimated fraud rate. The proposed estimation method is designed based on the proposed unsupervised method. Implemented using insurance fraud datasets with the known nature of claims (i.e., fraud or not), this estimation method yields accurate estimates which are superior to those generated by a benchmark naive estimation method.


Best Sellers


Product Details
  • ISBN-13: 9781243516725
  • Publisher: Proquest, Umi Dissertation Publishing
  • Publisher Imprint: Proquest, Umi Dissertation Publishing
  • Height: 254 mm
  • Weight: 313 gr
  • ISBN-10: 1243516720
  • Publisher Date: 02 Sep 2011
  • Binding: Paperback
  • Spine Width: 10 mm
  • Width: 203 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Supervised and Unsupervised Pridit for Active Insurance Fraud Detection.
Proquest, Umi Dissertation Publishing -
Supervised and Unsupervised Pridit for Active Insurance Fraud Detection.
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Supervised and Unsupervised Pridit for Active Insurance Fraud Detection.

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!