Buy Comparison of Data Mining Techniques Used to Predict Student Retention
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Society and Social Sciences > Education > Educational administration and organization > Comparison of Data Mining Techniques Used to Predict Student Retention
Comparison of Data Mining Techniques Used to Predict Student Retention

Comparison of Data Mining Techniques Used to Predict Student Retention


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Retaining undergraduate students at four-year public institutions has been a long-standing problem for many years. Although the retention issue has been the focus of literally thousands of studies over the past 75 years, it is widely acknowledged that this problem remains complex. Many retention studies have focused on a single variable or a single set of variables, and even a well-established factor such as low grade point average (GPA) explains only a small percentage of the variance in retention. Researchers in this area have noted the need for more sophisticated models that can take into account multiple variables that may contribute to student attrition as well as the need for retention research to be useful to practitioners in higher education settings. In addition, there are major gaps in the persistence literature when considering retention for part-time students, transfer students, and upperclassmen. Most retention research focuses on one-year retention for first-time, full-time freshmen, and new models that extend beyond this traditional focus are needed. The purpose of this study was to expand understanding of how educational institutions might benefit from including data mining processes and multivariate analysis to inform student retention strategies. This study applies data mining techniques to student demographic and behavioral data in an institution of higher education, providing a detailed description of the data mining process. Both full and part-time students as well as students at every class level were included in the analysis. Findings indicate that neural networks, Naive Bayesian classification, and decision tree induction are comparable to logistic regression when used to predict individual student retention. In addition, the data was segmented into several more homogeneous student groups and predictive performance improved for selected data segments, most notably for the part-time student segment. Finally, attribute evaluators were applied to each data segment and results indicate that a data mining approach can be used to isolate variables that predict persistence differently for different groups of students.


Best Sellers


Product Details
  • ISBN-13: 9781243423795
  • Publisher: Proquest, Umi Dissertation Publishing
  • Publisher Imprint: Proquest, Umi Dissertation Publishing
  • Height: 254 mm
  • Weight: 290 gr
  • ISBN-10: 124342379X
  • Publisher Date: 01 Sep 2011
  • Binding: Paperback
  • Spine Width: 9 mm
  • Width: 203 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Comparison of Data Mining Techniques Used to Predict Student Retention
Proquest, Umi Dissertation Publishing -
Comparison of Data Mining Techniques Used to Predict Student Retention
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Comparison of Data Mining Techniques Used to Predict Student Retention

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!