Buy Experimental Investigation on the Effects of Surface Roughness on Microscale Liquid Flow.
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Technology: general issues > Experimental Investigation on the Effects of Surface Roughness on Microscale Liquid Flow.
Experimental Investigation on the Effects of Surface Roughness on Microscale Liquid Flow.

Experimental Investigation on the Effects of Surface Roughness on Microscale Liquid Flow.


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Microfluidics has become of interest recently with shrinking device sizes. Roughness structures left from machining processes on the inside of tubes and channels that were once not a concern may now create relative roughness that exceeds 5%. Confusion still exists in the literature as to the extent of the effects of roughness on laminar flow. This work aims to experimentally examine the effects of different roughness structures on internal flows in high aspect ratio rectangular microchannels. A total of four test sections were fabricated to test samples with different patterned rough surfaces, and to also vary the two opposite surfaces forming the long faces of the channel. These test sections allowed the same roughness samples to be tested at varying relative roughnesses and allowed a systematic study on their effects on pressure drop. The first test section looked at sawtooth effects on laminar flow. The second looked at uniform roughness on laminar flow. The third looked at sawtooth roughness in turbulent flow, and the fourth looked at varying pitch sawtooth roughness in laminar flow. Rough surfaces were formed in one of two ways. The first involved making structured repeating sawtooth ridges with a ball end mill on a CNC machine. The second was using sandpaper in a crosshatch pattern to make a more unpatterned roughened surface. In this study, the Reynolds number was varied from 30 to 15,000 with degassed, deionized water as the working fluid. The experimental uncertainty in the experimental data is at worst 7.58% for friction factor and 2.67% for Reynolds number. Roughness structures varied from a lapped smooth surface with 0.2 mum roughness height to sawtooth ridges of height 117 mum. Hydraulic diameters from 198 m to 2,349 mum were tested. The highest relative roughness tested was 24.8%. As a result of the first and second experiments, it was shown that using constricted parameters, sawtooth and uniform roughness performance could be predicted in the laminar regime. In the third experiment, it was shown that certain sawtooth roughness samples cause the results to converge to a single line for friction factor. In the fourth experiment, the pitch of sawtooth elements was shown to be a key parameter in showing when each parameter is applicable. It was found that roughness has an effect even at relative roughness values less than 5%. Lapped smooth samples showed no departure from macroscale theory at all channel diameters tested, which implies that no departure from continuum mechanics occurred at the length scales tested. This fit with what was expected. Early transitions to turbulence were seen however, showing decreasing transition Reynolds number with increasing relative roughness. The lowest turbulent transition occurred at a Reynolds number of 210, with a relative roughness of 24.8%. Most all of the roughness structures studied were found to have experimental results that were well predicted with the use of constricted parameters. However, samples with roughness elements placed at higher pitches were seen to have experimental results approaching theory calculated with root parameters of the channel.


Best Sellers


Product Details
  • ISBN-13: 9781243419606
  • Publisher: Proquest, Umi Dissertation Publishing
  • Publisher Imprint: Proquest, Umi Dissertation Publishing
  • Height: 254 mm
  • Weight: 254 gr
  • ISBN-10: 1243419601
  • Publisher Date: 01 Sep 2011
  • Binding: Paperback
  • Spine Width: 8 mm
  • Width: 203 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Experimental Investigation on the Effects of Surface Roughness on Microscale Liquid Flow.
Proquest, Umi Dissertation Publishing -
Experimental Investigation on the Effects of Surface Roughness on Microscale Liquid Flow.
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Experimental Investigation on the Effects of Surface Roughness on Microscale Liquid Flow.

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!