Buy Simultaneous Multi-View Face Tracking and Recognition in Video Using Particle Filtering
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Technology: general issues > Simultaneous Multi-View Face Tracking and Recognition in Video Using Particle Filtering
Simultaneous Multi-View Face Tracking and Recognition in Video Using Particle Filtering

Simultaneous Multi-View Face Tracking and Recognition in Video Using Particle Filtering


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Recently, face recognition based on video has gained wide interest especially due to its role in surveillance systems. Video-based recognition has superior advantages over image-based recognition because a video contains image sequences as well as temporal information. However, surveillance videos are generally of low-resolution and contain faces mostly in non-frontal poses. We propose a multi-view, video-based face recognition algorithm using the Bayesian inference framework. This method represents an appearance of each subject by a complex nonlinear appearance manifold expressed as a collection of simpler pose manifolds and the connections, represented by transition probabilities, among them. A Bayesian inference formulation is introduced to utilize the temporal information in the video via the transition probabilities among pose manifolds. The Bayesian inference formulation realizes video-based face recognition by progressively accumulating the recognition confidences in frames. The accumulation step possibly enables to solve face recognition problems in low-resolution videos, and the progressive characteristic is especially useful for a real-time processing. Furthermore, this face recognition framework has another characteristic that does not require processing all frames in a video if enough recognition confidence is accumulated in an intermediate frame. This characteristic gives an advantage over batch methods in terms of a computational efficiency. Furthermore, we propose a simultaneous multi-view face tracking and recognition algorithm. Conventionally, face recognition in a video is performed in tracking- then-recognition scenario that extracts the best facial image patch in the tracking and then recognizes the identity of the facial image. Simultaneous face tracking and recognition works in a different fashion, by handling both tracking and recognition simultaneously. Particle filter is a technique for implementing a Bayesian inference filter by Monte Carlo simulation, which has gained prevalence in the visual tracking literature since the Condensation algorithm was introduced. Since we have proposed a video-based face recognition algorithm based on the Bayesian inference framework, it is easy to integrate the particle filter tracker and our proposed recognition method into one, using the particle filter for both tracking and recognition simultaneously. This simultaneous framework utilizes the temporal information in a video for not only tracking but also recognition by modeling the dynamics of facial poses. Although the time series formulation remains more general, only the facial pose dynamics is utilized for recognition in this thesis.


Best Sellers


Product Details
  • ISBN-13: 9781243411907
  • Publisher: Proquest, Umi Dissertation Publishing
  • Publisher Imprint: Proquest, Umi Dissertation Publishing
  • Height: 254 mm
  • Weight: 277 gr
  • ISBN-10: 1243411902
  • Publisher Date: 01 Sep 2011
  • Binding: Paperback
  • Spine Width: 9 mm
  • Width: 203 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Simultaneous Multi-View Face Tracking and Recognition in Video Using Particle Filtering
Proquest, Umi Dissertation Publishing -
Simultaneous Multi-View Face Tracking and Recognition in Video Using Particle Filtering
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Simultaneous Multi-View Face Tracking and Recognition in Video Using Particle Filtering

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!