Buy A Laboratory Study on the Effects of Submerged Vertical and Semicircular Breakwaters on Near-Field Hydrodynamics and Morphodynamics.
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Technology: general issues > A Laboratory Study on the Effects of Submerged Vertical and Semicircular Breakwaters on Near-Field Hydrodynamics and Morphodynamics.
A Laboratory Study on the Effects of Submerged Vertical and Semicircular Breakwaters on Near-Field Hydrodynamics and Morphodynamics.

A Laboratory Study on the Effects of Submerged Vertical and Semicircular Breakwaters on Near-Field Hydrodynamics and Morphodynamics.


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

A laboratory study is presented herein that investigates the effects of submerged vertical and semicircular breakwaters on near-field hydrodynamics and morphodynamics. Breakwaters are employed worldwide in order to reduce destructive wave forces often imparted on vulnerable shorelines; a task partially completed by reflecting incident wave energy back out to sea. However, two common side-effects of their function are the occurrence of scour at the breakwater, which can lead to structural problems; and offshore ripple formations, which are influential in scour protection failure and sediment transport patterns. This study aims to determine a relationship between breakwaters and the wave reflection coefficient (percentage of incident wave energy that is reflected out to sea), resultant scour along the base of the breakwater, and consequential offshore morphology. The initial phase of the investigation was a dimensional analysis study that yielded important parameters. The wave reflection coefficient was determined to rely only on a relative submergence parameter, defined as aHi, where a represents the depth of water above the crest of the breakwater and Hi represents the incident wave height. Parameterizations for the reflection coefficient were derived for each breakwater type (vertical and semicircular) and share the same functional dependency on the relative submergence parameter, yet include different constants. Therefore, an efficiency factor was developed in order to compare the semi-circular breakwater reflection coefficients to those of a vertical breakwater. It is important to note that as aHi goes to zero, the two breakwater types reflect identical percentages of energy, and therefore, the efficiency factor goes to unity. Even though semi-circular breakwaters possess a clear advantage in terms of stability in the wave field, vertical breakwaters are more efficient at reflecting wave energy. Due to tidal variations, engineers will need to determine which breakwater is superior for specific coastal conditions. The next phase of the study included measuring onshore breakwater-induced scour. However, prior to measuring scour geometry, it was determined that two scour regimes occurred: attached and detached. Attached scour connects directly to the onshore face of the breakwater while detached scour lies separate from the breakwater. The Keulegan-Carpenter number (KC) is critical in regime placement and it is concluded that for KC values less than p, attached scour occurs; for KC values larger than p, detached scour occurs. Dimensional analysis also led to the findings that onshore scour depended only on the mobility number (psi) and (KC). Scour depth, S max, was concluded to rely on psi and KC and was not regime dependent while scour length (Ls) and the distance of Smax from the onshore breakwater face (Ds) relied only on KC and were regime dependent. Another important conclusion is that scour characteristics were not breakwater shape dependent. The final aspect of the study was to qualitatively assess the offshore bedforms, which illustrated the partial standing wave system created by the breakwater. Offshore morphology, which is dependent on the nodal and antinodal near-bed velocities, occurred as plateaus in low near-bed velocity areas and ripples in high near-bed velocity areas. The presence of the breakwater limited onshore ripple migration which was evident from the lack of accumulation on the offshore breakwater face. Scour and ripples have caused breakwaters and scour protection to fail due to overturning, sliding, and undermining. Therefore, knowledge of these processes is crucial in the design of efficient...


Best Sellers


Product Details
  • ISBN-13: 9781243408402
  • Publisher: Proquest, Umi Dissertation Publishing
  • Publisher Imprint: Proquest, Umi Dissertation Publishing
  • Height: 254 mm
  • Weight: 259 gr
  • ISBN-10: 1243408405
  • Publisher Date: 01 Sep 2011
  • Binding: Paperback
  • Spine Width: 8 mm
  • Width: 203 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
A Laboratory Study on the Effects of Submerged Vertical and Semicircular Breakwaters on Near-Field Hydrodynamics and Morphodynamics.
Proquest, Umi Dissertation Publishing -
A Laboratory Study on the Effects of Submerged Vertical and Semicircular Breakwaters on Near-Field Hydrodynamics and Morphodynamics.
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

A Laboratory Study on the Effects of Submerged Vertical and Semicircular Breakwaters on Near-Field Hydrodynamics and Morphodynamics.

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!