About the Book
Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. Pages: 82. Chapters: Naive set theory, Cantor's diagonal argument, Total order, Class, Definable real number, Cofinality, Primitive notion, Goodstein's theorem, Cantor's first uncountability proof, Near sets, Metamath, Quasi-set theory, Ordinal arithmetic, Controversy over Cantor's theory, Paradoxes of set theory, Cardinality of the continuum, Set notation, Cantor's theorem, Support, List of set theory topics, Set-builder notation, Solovay model, Reflection principle, Tree, Equaliser, List of statements undecidable in ZFC, Multiplicity, Ideal, Limit cardinal, PCF theory, Stationary set, Hume's principle, Stratification, Transitive reduction, Vicious circle principle, Club set, Infinitary combinatorics, Club filter, Mathematical structure, Cardinal assignment, Successor cardinal, Set theory of the real line, Transitive set, Extensionality, Morass, Diamond principle, Hartogs number, Pairing function, Easton's theorem, Diaconescu's theorem, Normal function, Ω-logic, Jonsson function, Uniformization, Mengenlehreuhr, Ordinal definable set, Scott's trick, Jensen's covering theorem, Fodor's lemma, Paradoxical set, Kuratowski's free set theorem, Code, Chang's conjecture, Cabal, Categorical set theory, Erdős-Rado theorem, Hereditarily finite set, Hereditarily countable set, Preordered class, Suslin representation, Hereditary set, Fiber, Recursive ordinal, Clubsuit, Information diagram, Laver function, Diagonal intersection, Soft set, Almost, List of exceptional set concepts, Dimensional operator, Delta lemma, Inductive set, Symmetric set, Superstrong cardinal, Set-theoretic limit, Continuous function, N-set, Milner-Rado paradox, Separating set, Condensation lemma, Global square, Set-theoretic topology, Tail sequence, Admissible set, Ontological maximalism.