The Elements of Non-Euclidean Plane Geometry and Trigonometry
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > History and Archaeology > History > The Elements of Non-Euclidean Plane Geometry and Trigonometry
The Elements of Non-Euclidean Plane Geometry and Trigonometry

The Elements of Non-Euclidean Plane Geometry and Trigonometry


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This historic book may have numerous typos and missing text. Purchasers can download a free scanned copy of the original book (without typos) from the publisher. Not indexed. Not illustrated. 1916 Excerpt: ...angles y; and it can be constructed without that assumption. The associated triangle gives us the second side b of the required triangle. This argument depends upon the theorem proved in 41-3, that we can always find H(p) when p is given, and that proved in 45, that given IT(p), we can always find p. 37. Proper and Improper Points. In the Euclidean Plane two lines either intersect or are parallel. If we speak of two parallels as intersecting at "a point at infinity and assign to every straight line "a point at infinity," so that the plane is completed by the introduction of these fictitious or improper points, we can assert that any two given straight lines in the plane intersect each other. On this understanding we have two kinds of pencils of straight lines in the Euclidean Plane: the ordinary pencil whose vertex is a proper point, and the set of parallels to any given straight line, a pencil of lines whose vertex is an improper point. Also, in this Non-Euclidean Geometry, there are advantages to be gained by introducing fictitious points in the plane. If two coplanar straight lines are given they belong to one of three classes. They may intersect in the ordinary sense; they may be parallel; or they may be not-intersecting lines with a common perpendicular. Corresponding to the second and third classes we introduce two kinds of fictitious or improper points. Two parallel lines are said to intersect at a point at infinity. And every straight line will have two points at infinity, one corresponding to each direction of parallelism. All the lines parallel to a given line in the same sense will thus have a common point--a point at infinity on the line. Two not-intersecting lines have a common perpendicular. The lines ar...


Best Sellers


Product Details
  • ISBN-13: 9781152647640
  • Publisher: Rarebooksclub.com
  • Publisher Imprint: Rarebooksclub.com
  • Height: 246 mm
  • No of Pages: 46
  • Spine Width: 3 mm
  • Width: 189 mm
  • ISBN-10: 1152647644
  • Publisher Date: 01 May 2012
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Weight: 100 gr

Related Categories

Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
The Elements of Non-Euclidean Plane Geometry and Trigonometry
Rarebooksclub.com -
The Elements of Non-Euclidean Plane Geometry and Trigonometry
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

The Elements of Non-Euclidean Plane Geometry and Trigonometry

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!