Mobile Radio Channels 2e
Mobile Radio Channels 2e

Mobile Radio Channels 2e

|
     0     
5
4
3
2
1




Out of Stock


Notify me when this book is in stock
About the Book

Providing a comprehensive overview of the modelling, analysis and simulation of mobile radio channels, this book gives a detailed understanding of fundamental issues and examines state-of-the-art techniques in mobile radio channel modelling. It analyses several mobile fading channels, including terrestrial and satellite flat-fading channels, various types of wideband channels and advanced MIMO channels, providing a fundamental understanding of the issues currently being investigated in the field. Important classes of narrowband, wideband, and space-time wireless channels are explored in detail with descriptions of efficient simulation methods for mobile radio channels being central. Strong emphasis is placed on the detailed origin of the presented channel models and a high degree of mathematical unity is conveyed. Using the described channel models, the reader can evaluate the performance of wireless communication systems under propagation conditions which are typical for multipath channels in various environments. * Introduces the fundamentals of stochastic and deterministic channel models * Explores the modelling and simulation of both wideband and narrowband mobile radio channels as well as several classes of MIMO channels * Describes general concepts including geometrical, reference and simulation models * Discusses several methods for the modelling of given Doppler, delay, and angular profiles * Elaborates on methods for the design, analysis, and realisation of efficient channel simulators * Examines techniques for the development of fast channel simulators * Provides links for downloading MATLAB(R), programs enabling the simulation and analysis of the mobile fading channels models presented, on the companion website (www.wiley.com/go/paetzold)

Table of Contents:
Preface to the Second Edition xi List of Acronyms xv List of Symbols xix 1 Introduction 1 1.1 The Evolution of Mobile Radio Systems 1 1.2 Basic Knowledge of Mobile Radio Channels 8 1.3 Structure of this Book 12 2 Random Variables, Stochastic Processes, and Deterministic Signals 17 2.1 Random Variables 17 2.1.1 Basic Definitions of Probability Theory 17 2.1.2 Important Probability Density Functions 24 2.1.3 Functions of Random Variables 35 2.2 Stochastic Processes 37 2.2.1 Stationary Processes 40 2.2.2 Ergodic Processes 42 2.2.3 Level-Crossing Rate and Average Duration of Fades 43 2.2.4 Linear Systems with Stochastic Inputs 45 2.3 Deterministic Signals 48 2.3.1 Deterministic Continuous-Time Signals 48 2.3.2 Deterministic Discrete-Time Signals 50 2.4 Further Reading 52 Appendix 2.A Derivation of Rice s General Formula for the Level-Crossing Rate 52 3 Rayleigh and Rice Channels 55 3.1 System Theoretical Description of Multipath Channels 56 3.2 Formal Description of Rayleigh and Rice Channels 61 3.3 Elementary Properties of Rayleigh and Rice Channels 62 3.3.1 Autocorrelation Function and Spectrum of the Complex Envelope 62 3.3.2 Autocorrelation Function and Spectrum of the Envelope 65 3.3.3 Autocorrelation Function and Spectrum of the Squared Envelope 67 3.4 Statistical Properties of Rayleigh and Rice Channels 69 3.4.1 Probability Density Function of the Envelope and the Phase 70 3.4.2 Probability Density Function of the Squared Envelope 72 3.4.3 Level-Crossing Rate and Average Duration of Fades 73 3.4.4 The Statistics of the Fading Intervals of Rayleigh Channels 77 3.5 Further Reading 84 Appendix 3.A Derivation of the Jakes Power Spectral Density and the Corresponding Autocorrelation Function 84 Appendix 3.B Derivation of the Autocorrelation Function of the Envelope 88 Appendix 3.C Derivation of the Autocovariance Spectrum of the Envelope Under Isotropic Scattering Conditions 90 Appendix 3.D Derivation of the Level-Crossing Rate of Rice Processes with Different Spectral Shapes of the Underlying Gaussian Random Processes 91 4 Introduction to Sum-of-Sinusoids Channel Models 95 4.1 Principle of Deterministic Channel Modelling 96 4.2 Elementary Properties of Deterministic Sum-of-Sinusoids Processes 102 4.3 Statistical Properties of Deterministic Sum-of-Sinusoids Processes 107 4.3.1 Probability Density Function of the Envelope and the Phase 108 4.3.2 Level-Crossing Rate and Average Duration of Fades 115 4.3.3 Statistics of the Fading Intervals at Low Signal Levels 120 4.3.4 Stationarity and Ergodicity of Sum-of-Sinusoids Processes 122 4.4 Classes of Sum-of-Sinusoids Processes 123 4.5 Basics of Sum-of-Cisoids Channel Models 126 4.5.1 Elementary Properties of Stochastic Sum-of-Cisoids Processes 127 4.5.2 Probability Density Function of the Envelope and Phase 129 4.6 Criteria for the Performance Evaluation 135 4.7 Further Reading 135 Appendix 4.A Derivation of the Autocorrelation Function of the Squared Envelope of Complex Deterministic Gaussian Processes 136 Appendix 4.B Derivation of the Exact Solution of the Level-Crossing Rate and the Average Duration of Fades of Deterministic Rice Processes 137 5 Parametrization of Sum-of-Sinusoids Channel Models 149 5.1 Methods for Computing the Doppler Frequencies and Gains 151 5.1.1 Method of Equal Distances (MED) 151 5.1.2 Mean-Square-Error Method (MSEM) 157 5.1.3 Method of Equal Areas (MEA) 162 5.1.4 Monte Carlo Method (MCM) 170 5.1.5 Jakes Method (JM) 178 5.1.6 Lp-Norm Method (LPNM) 189 5.1.7 Method of Exact Doppler Spread (MEDS) 201 5.1.8 Randomized Method of Exact Doppler Spread (RMEDS) 205 5.1.9 Method of Exact Doppler Spread with Set Partitioning (MEDS-SP) 207 5.2 Methods for Computing the Phases 212 5.3 Fading Intervals of Deterministic Rayleigh Processes 214 5.4 Parametrization of Sum-of-Cisoids Channel Models 222 5.4.1 Problem Description 222 5.4.2 Extended Method of Exact Doppler Spread (EMEDS) 222 5.4.3 Lp-Norm Method (LPNM) 224 5.4.4 Generalized Method of Equal Areas (GMEA) 225 5.4.5 Performance Analysis 228 5.5 Concluding Remarks and Further Reading 234 Appendix 5.A Analysis of the Relative Model Error by Using the Monte Carlo Method 236 Appendix 5.B Proof of the Convergence of the Sample Mean Autocorrelation Function by Using the MEDS-SP 238 Appendix 5.C Proof of the Condition for Uncorrelated Inphase and Quadrature Components of SOC Processes 239 6 Frequency-Nonselective Channel Models 241 6.1 The Extended Suzuki Process of Type I 243 6.1.1 Modelling and Analysis of Short-Term Fading 243 6.1.2 Modelling and Analysis of Long-Term Fading 254 6.1.3 The Stochastic Extended Suzuki Process of Type I 257 6.1.4 The Deterministic Extended Suzuki Process of Type I 262 6.1.5 Applications and Simulation Results 265 6.2 The Extended Suzuki Process of Type II 268 6.2.1 Modelling and Analysis of Short-Term Fading 269 6.2.2 The Stochastic Extended Suzuki Process of Type II 279 6.2.3 The Deterministic Extended Suzuki Process of Type II 283 6.2.4 Applications and Simulation Results 287 6.3 The Generalized Rice Process 290 6.3.1 The Stochastic Generalized Rice Process 291 6.3.2 The Deterministic Generalized Rice Process 295 6.3.3 Applications and Simulation Results 298 6.4 The Modified Loo Model 300 6.4.1 The Stochastic Modified Loo Model 300 6.4.2 The Deterministic Modified Loo Model 311 6.4.3 Applications and Simulation Results 317 6.5 Modelling of Nonstationary Land Mobile Satellite Channels 319 6.5.1 Lutz s Two-State Channel Model 320 6.5.2 M-State Channel Models 322 6.5.3 Modelling of Nonstationary Real-World LMS Channels 323 7 Frequency-Selective Channel Models 335 7.1 The Ellipse Model of Parsons and Bajwa 336 7.2 System Theoretical Description of Frequency-Selective Channels 338 7.3 Frequency-Selective Stochastic Channel Models 342 7.3.1 Correlation Functions 342 7.3.2 The WSSUS Model According to Bello 344 7.3.3 The COST 207 Channel Models 352 7.3.4 The HIPERLAN/2 Channel Models 358 7.4 Frequency-Selective Sum-of-Sinusoids Channel Models 358 7.4.1 System Functions of Sum-of-Sinusoids Uncorrelated Scattering (SOSUS) Models 358 7.4.2 Correlation Functions and Power Spectral Densities of SOSUS Models 364 7.4.3 Delay Power Spectral Density, Doppler Power Spectral Density, and Characteristic Quantities of SOSUS Models 368 7.4.4 Determination of the Model Parameters of SOSUS Models 372 7.4.5 Simulation Models for the COST 207 Channel Models 376 7.5 Methods for Modelling of Given Power Delay Profiles 378 7.5.1 Problem Description 379 7.5.2 Methods for the Computation of the Discrete Propagation Delays and the Path Gains 381 7.5.3 Comparison of the Parameter Computation Methods 391 7.5.4 Applications to Measured Power Delay Profiles 393 7.6 Perfect Modelling and Simulation of Measured Wideband Mobile Radio Channels 396 7.6.1 The Sum-of-Cisoids Uncorrelated Scattering (SOCUS) Model 396 7.6.2 The Principle of Perfect Channel Modelling 403 7.6.3 Application to a Measured Wideband Indoor Channel 404 7.7 Further Reading 406 Appendix 7.A Specification of the L-Path COST 207 Channel Models 409 Appendix 7.B Specification of the L-Path HIPERLAN/2 Channel Models 413 8 MIMO Channel Models 417 8.1 The Generalized Principle of Deterministic Channel Modelling 418 8.2 The One-Ring MIMO Channel Model 421 8.2.1 The Geometrical One-Ring Scattering Model 422 8.2.2 The Reference Model for the One-Ring MIMO Channel Model 423 8.2.3 Simulation Models for the One-Ring MIMO Channel Model 429 8.2.4 Parameter Computation Methods 433 8.2.5 Performance Evaluation 434 8.2.6 Simulation Results 436 8.3 The Two-Ring MIMO Channel Model 438 8.3.1 The Geometrical Two-Ring Scattering Model 439 8.3.2 The Reference Model for the Two-Ring MIMO Channel Model 440 8.3.3 Simulation Models for the Two-Ring MIMO Channel Model 445 8.3.4 Isotropic and Non-Isotropic Scattering Scenarios 449 8.3.5 Parameter Computation Methods 451 8.4 The Elliptical MIMO Channel Model 457 8.4.1 The Geometrical Elliptical Scattering Model 458 8.4.2 The Reference Model for the Elliptical MIMO Channel Model 459 8.4.3 Simulation Models for the Elliptical MIMO Channel Model 463 8.4.4 Model Extensions 466 8.5 Further Reading 469 Appendix 8.A Proof of Ergodicity 472 9 High-Speed Channel Simulators 475 9.1 Discrete-Time Deterministic Processes 476 9.2 Realization of Discrete-Time Deterministic Processes 478 9.2.1 Look-Up Table System 478 9.2.2 Matrix System 481 9.2.3 Shift Register System 483 9.3 Properties of Discrete-Time Deterministic Processes 484 9.3.1 Elementary Properties of Discrete-Time Deterministic Processes 484 9.3.2 Statistical Properties of Discrete-Time Deterministic Processes 491 9.4 Realization Complexity and Simulation Speed 500 9.5 Comparison of the Sum-of-Sinusoids Method with the Filter Method 502 9.6 Further Reading 505 10 Selected Topics in Mobile Radio Channel Modelling 507 10.1 Design of Multiple Uncorrelated Rayleigh Fading Waveforms 507 10.1.1 Problem Description 508 10.1.2 Generalized Method of Exact Doppler Spread (GMEDSq) 511 10.1.3 Related Parameter Computation Methods 516 10.1.4 The Effect of Finite Simulation Time on the Cross-Correlation Properties 518 10.1.5 Further Reading 520 10.2 Spatial Channel Models for Shadow Fading 521 10.2.1 The Reference Model for Shadow Fading 522 10.2.2 The Simulation Model for Shadow Fading 523 10.2.3 Correlation Models for Shadow Fading 527 10.2.4 Further Reading 535 10.3 Frequency Hopping Mobile Radio Channels 536 10.3.1 The Reference Model for Frequency Hopping Channels 536 10.3.2 The Simulation Model for Frequency Hopping Channels 538 10.3.3 Performance Analysis 540 10.3.4 Simulation Results 544 10.3.5 Further Reading 544 Appendix 10.A Derivation of the Spatial Autocorrelation Function of Lognormal Processes 545 Appendix 10.B Derivation of the Level-Crossing Rate of Spatial Lognormal Processes 546 Appendix 10.C Derivation of the Level-Crossing Rate of Sum-of-Sinusoids Shadowing Simulators 546 Appendix 10.D Application of the Method of Equal Areas (MEA) on the Gudmundson Correlation Model 548 Appendix 10.E Derivation of the Time-Frequency Cross-Correlation Function of Frequency Hopping Channels 549 Appendix 10.F Parametrization of Frequency Hopping Channel Simulators 551 References 553 Index 571


Best Sellers


Product Details
  • ISBN-13: 9781119974116
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: John Wiley & Sons Inc
  • Height: 244 mm
  • No of Pages: 616
  • Weight: 666 gr
  • ISBN-10: 1119974119
  • Publisher Date: 10 Oct 2011
  • Binding: Other digital
  • Language: English
  • Spine Width: 15 mm
  • Width: 168 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Mobile Radio Channels 2e
John Wiley & Sons Inc -
Mobile Radio Channels 2e
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Mobile Radio Channels 2e

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!