Buy Materials for Solar Energy Conversion at Bookstore UAE
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Electronics and communications engineering > Materials for Solar Energy Conversion: Materials, Methods and Applications
Materials for Solar Energy Conversion: Materials, Methods and Applications

Materials for Solar Energy Conversion: Materials, Methods and Applications


     0     
5
4
3
2
1



International Edition


X
About the Book

MATERIALS FOR SOLAR ENERGY CONVERSION This book provides professionals and students with a resource on the basic principles and applications of solar energy materials and processes, as well as practicing engineers who want to understand how functional materials operate in solar energy conversion systems. The demand for energy is increasing daily, and the development of sustainable power generation is a critical issue. In order to overcome the energy demand, power generation through solar energy is booming. Many research works have attempted to enhance the efficiency of collection and storage of solar energy and, as a result, numerous advanced functional materials have been developed for enhancing the performance of solar cells. This book has compiled and broadly explores the latest developments of materials, methods, and applications of solar energy. The book is divided into 2 parts, in which the first part deals with solar cell fundamentals and emerging categories, and the latter part deals with materials, methods, and applications in order to fill the gap between existing technologies and practical requirements. The book presents detailed chapters including organic, inorganic, coating materials, and collectors. The use of modern computer simulation techniques, conversion and storage processes are effectively covered. Topics such as nanostructured solar cells, battery materials, etc. are included in this book as well. Audience The book is aimed at researchers in materials science, chemistry, physics, electrical and mechanical engineering working in the fields of nanotechnology, photovoltaic device technology, and solar energy.

Table of Contents:
Preface xv Part 1: Solar Cells - Fundamentals and Emerging Categories 1 1 Introduction to Solar Energy Conversion 3 Manivannan Rajendran, Moganapriya Chinnasamy, Suresh Muthusamy and Manikandan Kumaran Nair 1.1 Introduction 3 1.2 Forms of Energy 5 1.3 Solar Radiation 6 1.4 Heat Transfer Principles 7 1.4.1 Conduction 7 1.4.2 Convection 7 1.4.3 Radiation 7 1.5 Basic Laws of Radiation 8 1.5.1 Stefan-Boltzmann Law 8 1.5.2 Planck’s Law 9 1.5.3 Wien’s Displacement Law 9 1.6 Solar Energy Conversion 9 1.6.1 Sources of Renewable and Non-Renewable Energy 10 1.6.2 Differentiate Between Renewable and Non-Renewable Energy Sources 10 1.7 Photo-Thermal Conversion System 11 1.7.1 Flat Plate Collector 11 1.7.2 Evacuated Solar Collector 15 1.8 Thermal Applications 15 1.8.1 Solar Water Heating Systems 17 1.8.2 Steam Generation 20 1.9 Solar Drying 21 1.9.1 Natural Circulation Methods 23 1.9.2 Forced Circulation Systems 25 1.10 Photovoltaic Conversion 25 1.10.1 Photovoltaic Effect 26 1.10.2 Applications 27 1.11 Photovoltaic Thermal Systems 27 1.12 Conclusion 28 References 28 2 Development of Solar Cells 33 Mohan Kumar Anand Raj, Rajasekar Rathanasamy and Moganapriya Chinnasamy Abbreviations 33 2.1 Introduction 34 2.2 First-Generation PV Cells 34 2.2.1 Single-Crystalline PV Cells 35 2.3 Second-Generation Solar PV Technology 36 2.3.1 Amorphous Silicon PV Cell 36 2.3.2 Cadmium Telluride PV Cell 37 2.3.3 Copper Indium Gallium Diselenide PV Cells 38 2.4 Third-Generation PV Cells 38 2.4.1 Copper Zinc Tin Sulfide PV Cell 40 2.4.2 Dye Sensitized PV Ccell 40 2.4.3 Organic PV Cell 42 2.4.4 Perovskite PV Solar Cells 43 2.4.5 Polymer Photovoltaic Cell 43 2.4.6 Quantum Dot Photovoltaic Cell 43 2.5 Conclusion 44 References 45 3 Recycling of Solar Panels 47 Sathish Kumar Palaniappan, Moganapriya Chinnasamy, Rajasekar Rathanasamy and Samir Kumar Pal Abbreviations 48 3.1 Introduction 49 3.2 PV and Recycling Development Worldwide 52 3.2.1 Causes of Inability in Solar PV Panel 54 3.3 Current Recycling and Recovery Techniques 55 3.3.1 Methods for Recycling 55 3.3.2 Physical Separation 55 3.3.3 Thermal and Chemical-Based Treatment 56 3.4 Strategies for Recycling Processes 63 3.5 Approaches for Recycling of Solar Panel 65 3.5.1 Component Repair 66 3.5.2 Module Separation 66 3.5.3 Decomposition of Silicon and Precious Industrial Minerals From Modules 68 3.6 Global Surveys in PV Recycling Technology 71 3.7 Ecological and Economic Impacts 76 3.7.1 Evolutionary Factors 77 3.7.2 Socio-Economic Concerns 77 3.8 Conclusion 78 References 79 4 Multi-Junction Solar Cells 87 Mohanraj Thangamuthu, Tamilvanan Ayyasamy and Santhosh Sivaraj Abbreviation 87 4.1 Introduction 88 4.1.1 Theory of Multi-Junction Cells 89 4.2 Key Issues for Realizing the Efficiency of MJCs 91 4.2.1 Preference of Top Layer Materials and Enhancing the Quality 91 4.2.2 Low-Loss Tunneling Junction for Intercell Connection and Preventing Impurity Diffusion From Tunneling Junction 92 4.2.3 Lattice-Matching Between Cell Materials and Substrates 92 4.2.4 Effectiveness of Wide-Bandgap Back Surface Field (BSF) Layer 92 4.3 Structure of Multi-Junction Cell 93 4.3.1 Multi-Junction Cell With BSF Layer 96 4.3.2 Optimization of BSF Layers 98 4.4 Novel Materials for Multi-Junction Cells 98 4.5 Applications 100 4.6 Conclusions 102 References 102 5 Perovskite Solar Cells 107 Santhosh Sivaraj, Rajasekar Rathanasamy, Gobinath Velu Kaliyannan and Mugilan Thanigachalam 5.1 Introduction 108 5.2 Structure and Working 112 5.3 Fabrication of Simple Perovskite Solar Cell 115 5.4 Fabrication Methods 117 5.4.1 Spin Coating 122 5.4.2 Blade Coating 122 5.4.3 Slot-Die Coating 122 5.4.4 Inkjet Printing 123 5.4.5 Screen Printing 123 5.4.6 Electrodeposition 123 5.4.7 Vapor-Phase Deposition 123 5.5 Stability of Perovskite Solar Cell 124 5.6 Losses in Solar Cells 124 5.7 Conclusion 126 References 127 6 Natural Dye-Sensitized Solar Cells 133 Viswapriya Shanmugam, Rajasekar Rathanasamy, Saratha Raman and Abbas Ganesan Abbreviations 134 6.1 Introduction 134 6.2 Dye-Sensitized Solar Cells (DSSCs) 135 6.2.1 The Structure and Operation Principle 136 6.2.2 Performance Parameters of DSSCs 137 6.2.2.1 Open Circuit Voltage 138 6.2.2.2 Short Circuit Current 138 6.2.2.3 Fill Factor 138 6.2.2.4 Efficiency 138 6.3 Dye (Photosensitizer) 138 6.3.1 Natural Dyes 139 6.3.2 Plant Pigments 146 6.3.2.1 Anthocyanin 146 6.3.2.2 Chlorophylls 147 6.3.2.3 Betalain 147 6.3.2.4 Carotenoids 147 6.3.3 Photoconversion Efficiency of Natural Dyes Employed as Dye Sensitizers—Notable Studies 148 6.4 Conclusion 162 References 162 Part 2: Materials, Methods and Applications 169 7 Organic Materials and Their Processing Techniques 171 Raja Gunasekaran, Gobinath Velu Kaliyannan, Saravanakumar Jaganathan and Harikrishnakumar Mohan Kumar 7.1 Introduction 172 7.2 Organic Materials 173 7.2.1 Organic Solar Cell 174 7.2.2 Challenges in Organic Solar Cells 174 7.2.3 Focus Area to Overcome the Challenges 174 7.2.4 Operation of Organic Solar Cells 174 7.2.5 Organic Solar Cell Device Architecture 176 7.2.5.1 Single Active-Layer Device 176 7.2.5.2 Double Active-Layer Device 176 7.2.5.3 Bulk Heterojunction Photovoltaic Cell 177 7.3 Electrical Characteristics of OPVs 178 7.3.1 Open-Circuit Voltage 178 7.3.2 Short-Circuit Current 179 7.3.3 Maximum Power Point 179 7.3.4 Fill Factor 179 7.3.5 Power Conversion Efficiency 179 7.3.6 Quantum Efficiency 180 7.4 Potential Materials for OPV Applications 180 7.4.1 Electron-Donor Materials 180 7.4.2 Electron-Acceptor Materials 183 7.5 Conclusion 184 References 185 8 Inorganic Materials and Their Processing Techniques 189 Manivasakan Palanisamy, Gobinath Velu Kaliyannan and Harikrishnakumar Mohan Kumar 8.1 Introduction 190 8.2 Functional Inorganic Materials 191 8.3 Comprehensive Processing Strategy 192 8.4 Solid-Phase Processing 194 8.4.1 Ceramic Method 194 8.4.2 Microwave Technique 195 8.4.3 Combustion Synthesis 196 8.4.4 Mechanochemical Synthesis 197 8.4.5 Carbothermal Reduction 198 8.4.6 Friction Consolidation 199 8.4.7 3D Printing Technique 200 8.4.8 Nanolithography Technique 201 8.5 Solution-Phase Processing 202 8.5.1 Sol-Gel Process 202 8.5.2 Hydrothermal and Solvothermal Process 203 8.5.3 Sonochemical Synthesis 204 8.5.4 Surface Coating Technique 206 8.5.5 Spray Pyrolysis Technique 207 8.5.6 Electroplating and Electrodeposition Process 208 8.5.7 Liquid Printing Technique 209 8.5.8 Liquid-Phase Laser Ablation Technique 210 8.5.9 Electrospinning and Electrospraying Technique 212 8.6 Gas-Phase Processing 213 8.6.1 Physical Vapor Deposition Technique 213 8.6.2 Chemical Vapor Deposition Technique 215 8.6.3 Inert Gas Condensation Technique 216 8.6.4 Molecular Beam Epitaxy Technique 218 8.6.5 Gas-Phase Flame Spray Pyrolysis 219 8.7 Challenges in Nanomaterial Production and Processing 221 8.8 Conclusion and Perspectives 222 References 222 9 2D Materials for Solar Cell Applications 227 Shrabani De, Sourav Acharya, Sumanta Sahoo, Ashok Kumar Das and Ganesh Chandra Nayak 9.1 Introduction 228 9.2 Fundamental Principles of Solar Cell 231 9.3 Fabrication Methods for the Generation of Solar Cell 234 9.3.1 Spin Coating 234 9.3.2 Spray Coating 237 9.3.3 Doctor Blading 238 9.3.4 Slot-Die Coating 238 9.3.5 Vacuum Deposition/Chemical Vapor Deposition 240 9.3.6 Screen Printing 241 9.4 Introduction to 2D Materials 242 9.4.1 Graphene 242 9.4.2 Boron Nitride 244 9.4.3 Molybdenum Disulfide 244 9.4.4 MXenes 245 9.4.5 Other 2D Materials 246 9.5 Solar Cell Application of 2D Materials 246 9.5.1 2D Materials for Organic Solar Cells 246 9.5.2 2D Materials for Perovskite Solar Cells 249 9.5.3 2D Materials for Dye-Sensitized Solar Cells (DSSCs) 251 9.5.4 2D Materials for Other Solar Cell 255 9.6 Conclusions 256 References 257 10 Nanostructured Materials and Their Processing Techniques 269 Tamilvanan Ayyasamy, Abubakkar Abdul Jaffar, Selvakumar Pandiyaraj, Mohanraj Thangamuthu and Thangavel Palaniappan 10.1 Introduction 269 10.2 The Need for Solar Energy 270 10.2.1 Solar Photovoltaic Cell 271 10.2.2 Solar Thermal Heating 272 10.3 Nanoscience and Nanotechnology 273 10.4 Nanotechnology in Solar Energy 273 10.4.1 Nanomaterials 274 10.4.2 Properties of Nanomaterials 275 10.4.3 Nanofluids 275 10.5 The Outlook of Nanomaterials in the Performance of Solar Cells 276 10.6 Photovoltaic-Based Nanomaterials and Synthesis Techniques 277 10.6.1 Sol-Gel Method 278 10.6.2 Hydrothermal Method 280 10.6.3 Solvothermal Technique 281 10.6.4 Co-Precipitation Technique 283 10.6.5 Magnetron Sputtering 284 10.6.6 Spin Coating 286 10.6.7 Chemical Vapor Deposition Technique 287 10.6.7.1 Atmospheric Pressure Chemical Vapor Deposition Method 289 10.6.7.2 Plasma-Enhanced Vapor Deposition Method 290 10.7 Nanofluids in Solar Collectors 290 10.8 Nanofluids in Solar Stills 292 10.9 Conclusion 293 References 293 11 Coating Materials, Methods, and Techniques 299 Gobinath Velu Kaliyannan, Raja Gunasekaran, Manju Sri Anbupalani and Sathish Kumar Palaniappan 11.1 Introduction 300 11.2 Thin Film Deposition Techniques 301 11.2.1 Advantages of Thin Films 301 11.3 Anti-Reflection Thin Films 302 11.4 Methods of Thin Film Growth 303 11.4.1 Physical Vapor Deposition 304 11.4.2 Thermal Evaporation Process 304 11.4.3 Pulsed Laser Deposition 304 11.4.4 Sputter Deposition 304 11.4.5 Chemical Vapor Deposition 305 11.4.6 Plasma-Enhanced CVD Method 305 11.4.7 Electrochemical Deposition 305 11.4.8 Sol-Gel Thin Film Formation 306 11.5 Thin Film Characterization 308 11.5.1 X-ray Diffraction 308 11.5.2 Fourier Transform Infrared Spectroscopy 309 11.5.3 Thermogravimetry and Differential Thermal Analysis 310 11.5.4 UV-Visible Spectroscopy 311 11.5.5 Field Emission Scanning Electron Microscope 312 11.5.6 High-Resolution Transmission Electron Microscope 314 11.5.7 Atomic Force Microscopy 314 11.5.8 Four-Probe Technique 317 11.6 Performance Analysis of ARC Coated Solar Cells 317 11.7 Conclusion 320 References 320 12 Anti-Reflection Coating 323 Ragavendran Asokan, Rajasekar Rathanasamy, Saravanakumar Jaganathan and Mohan Kumar Anand Raj 12.1 Introduction 324 12.2 Anti-Reflection Coating 326 12.2.1 Types of Anti-Reflection Coating 329 12.2.2 Textured Coating 330 12.2.3 Anti-Reflection Coating With Self-Cleaning 331 12.3 Perspectives on ARC Materials 331 12.3.1 Silicon-Based Material 332 12.3.2 TiO2-Based Material 332 12.3.3 Carbon-Based Material 333 12.3.4 Gallium-Based Material 333 12.3.5 Polymer-Based Material 333 12.3.6 Organic-Based Material 334 12.4 Techniques for Coating ARC 334 12.4.1 Sol-Gel Technique 334 12.4.1.1 Spin Coating Technique 334 12.4.1.2 Dip Coating Technique 335 12.4.1.3 Meniscus Coating Technique 336 12.4.2 Physical Vapor Deposition 337 12.4.2.1 Thermal Evaporation Technique 337 12.4.2.2 Electron Beam Technique 338 12.4.3 RF and DC Magnetron Sputtering Technique 338 12.4.4 Chemical Vapor Deposition 339 12.4.5 Electrospinning Technique 339 12.4.6 Spray Pyrolysis Technique 341 12.4.7 Lithography 341 12.4.8 Comparison of Coating Techniques 342 12.5 Literature Studies: Impact of ARC on Performance of Solar Cell 343 12.6 Conclusion 345 References 346 13 Thermal Energy Storage and Its Applications 353 Veerakumar Chinnasamy, Sathish Kumar Palaniappan, Mohan Kumar Anand Raj, Manivannan Rajendran and Honghyun Cho 13.1 Introduction 354 13.2 Types of ES 354 13.2.1 Mechanical ES 354 13.2.1.1 Flywheel Storage 355 13.2.1.2 Pumped Water Storage 355 13.2.1.3 Compressed Air Storage 355 13.2.2 Electrochemical ES 355 13.2.3 Thermal Energy Storage 356 13.2.4 Advantages of TES 356 13.3 Methods of TES 357 13.3.1 Sensible Heat Storage 357 13.3.1.1 Properties of SHS Materials 357 13.3.2 Latent Heat Storage 358 13.3.2.1 Properties of LHS Materials or PCMs 359 13.3.2.2 Classification of PCMs 359 13.3.3 Thermochemical ES 362 13.4 Applications of TES 362 13.4.1 SHS Applications 362 13.4.1.1 Solar Pond 362 13.4.1.2 Solar Water Heating 363 13.4.1.3 Packed Rock Bed Storage 363 13.4.2 Latent Heat Storage Applications 365 13.4.2.1 Encapsulation of PCM 365 13.4.2.2 Solar Water Heater With LHS 367 13.4.2.3 TES for Building Application 367 13.4.2.4 Numerical Studies on TES 370 13.5 Conclusion 374 References 375 Index 379

About the Author :
R. Rajasekar PhD, Professor and Head of the Department of Mechanical Engineering, Kongu Engineering College (an Autonomous Institution under Anna University), Tamilnadu, India. He obtained his PhD from the Indian Institute of Technology, Kharagpur, and specializes in materials science and engineering, renewable energy, surface coating on solar cells, and tribological performance of carbide inserts. He has published more than 100 research articles in reputed international journals, as well as more than 30 book chapters. C. Moganapriya PhD, is an associate professor in the Department of Mechanical Engineering, Kongu Engineering College (An Autonomous Institution under Anna University), Tamilnadu, India. She completed her PhD in 2019, and her current research area includes surface engineering of solar cells for performance enhancement of power conversion efficiency and tribological performance of cutting tool insert by adopting several hard coating materials. She has published 13 research articles and 15 book chapters with international publishers. A. Mohan Kumar PhD, is an associate professor in the Department of Mechanical Engineering, Kongu Engineering College (An Autonomous Institution under Anna University), Tamil Nadu. He completed his postgraduate degree at Government College of Engineering, Salem. His research areas are the characterization of reinforced composite materials, composite machining polymer coatings, and nanocomposite coatings. He has published 13 research articles and book chapters.


Best Sellers


Product Details
  • ISBN-13: 9781119750604
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: Wiley-Scrivener
  • Height: 10 mm
  • No of Pages: 400
  • Returnable: N
  • Sub Title: Materials, Methods and Applications
  • Width: 10 mm
  • ISBN-10: 1119750601
  • Publisher Date: 26 Nov 2021
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Spine Width: 10 mm
  • Weight: 454 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Materials for Solar Energy Conversion: Materials, Methods and Applications
John Wiley & Sons Inc -
Materials for Solar Energy Conversion: Materials, Methods and Applications
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Materials for Solar Energy Conversion: Materials, Methods and Applications

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!