Finite Element Modeling of Elastohydrodynamic Lubrication Problems
Home > Science, Technology & Agriculture > Mechanical engineering and materials > Materials science > Engineering applications of surface coatings and films > Finite Element Modeling of Elastohydrodynamic Lubrication Problems
Finite Element Modeling of Elastohydrodynamic Lubrication Problems

Finite Element Modeling of Elastohydrodynamic Lubrication Problems

|
     0     
5
4
3
2
1




Available


About the Book

Covers the latest developments in modeling elastohydrodynamic lubrication (EHL) problems using the finite element method (FEM) This comprehensive guide introduces readers to a powerful technology being used today in the modeling of elastohydrodynamic lubrication (EHL) problems. It provides a general framework based on the finite element method (FEM) for dealing with multi-physical problems of complex nature (such as the EHL problem) and is accompanied by a website hosting a user-friendly FEM software for the treatment of EHL problems, based on the methodology described in the book. Finite Element Modeling of Elastohydrodynamic Lubrication Problems begins with an introduction to both the EHL and FEM fields. It then covers Standard FEM modeling of EHL problems, before going over more advanced techniques that employ model order reduction to allow significant savings in computational overhead. Finally, the book looks at applications that show how the developed modeling framework could be used to accurately predict the performance of EHL contacts in terms of lubricant film thickness, pressure build-up and friction coefficients under different configurations. Finite Element Modeling of Elastohydrodynamic Lubrication Problems offers in-depth chapter coverage of Elastohydrodynamic Lubrication and its FEM Modeling, under Isothermal Newtonian and Generalized-Newtonian conditions with the inclusion of Thermal Effects; Standard FEM Modeling; Advanced FEM Modeling, including Model Order Reduction techniques; and Applications, including Pressure, Film Thickness and Friction Predictions, and Coated EHL. This book: Comprehensively covers the latest technology in modeling EHL problems Focuses on the FEM modeling of EHL problems Incorporates advanced techniques based on model order reduction Covers applications of the method to complex EHL problems Accompanied by a website hosting a user-friendly FEM-based EHL software Finite Element Modeling of Elastohydrodynamic Lubrication Problems is an ideal book for researchers and graduate students in the field of Tribology.

Table of Contents:
Preface xiii Nomenclature xvii About the CompanionWebsite xxv Part I Introduction 1 1 Elastohydrodynamic Lubrication (EHL) 3 1.1 EHL Regime 3 1.2 Governing Equations in Dimensional Form 7 1.2.1 Generalized Reynolds Equation 9 1.2.2 FilmThickness Equation 15 1.2.3 Linear Elasticity Equations 18 1.2.4 Load Balance Equation 24 1.2.5 Energy Equations 24 1.2.6 Shear Stress Equations 28 1.3 Governing Equations in Dimensionless Form 28 1.3.1 Dimensionless Parameters 29 1.3.2 Generalized Reynolds Equation 31 1.3.3 FilmThickness Equation 32 1.3.4 Linear Elasticity Equations 33 1.3.5 Load Balance Equation 34 1.3.6 Energy Equations 34 1.3.7 Shear Stress Equations 36 1.4 Lubricant Constitutive Behavior 36 1.4.1 Pressure and Temperature Dependence 37 1.4.1.1 Density 37 1.4.1.2 Viscosity 39 1.4.1.3 Thermal Conductivity and Heat Capacity 41 1.4.2 Shear Dependence of Viscosity 41 1.4.3 Limiting Shear Stress 43 1.5 Dimensionless Groups 44 1.6 Review of EHL Numerical Modeling Techniques 46 1.7 Conclusion 52 References 52 2 Finite ElementMethod (FEM) 59 2.1 FEM:The Basic Idea 59 2.2 Model PDE 61 2.3 Steady-State Linear FEM Analysis 63 2.3.1 Elementary Integral Formulations 64 2.3.1.1 Weighted-Residual Form 64 2.3.1.2 Weak Form 65 2.3.2 Solution Approximation 66 2.3.2.1 Meshing and Discretization 67 2.3.2.2 Lagrange Linear Elements 69 2.3.2.3 Lagrange Quadratic Elements 73 2.3.3 Galerkin Formulation 75 2.3.4 Integral Evaluations: Mapping between Reference and Actual Elements 78 2.3.5 Connectivity of Elements 85 2.3.6 Assembly Process and Treatment of B.C.’s 86 2.3.7 Resolution Process 90 2.3.8 Post-Processing of the Solution 91 2.3.9 One-Dimensional Example 92 2.4 Steady-State Nonlinear FEM Analysis 99 2.4.1 Newton Methods for Nonlinear Systems of Equations 99 2.4.1.1 Newton Method 100 2.4.1.2 Damped-NewtonMethod 102 2.4.2 Nonlinear FEM Formulation 105 2.5 Transient FEM Analysis 109 2.5.1 Space-Time Discretization 110 2.5.2 Time-Dependent FEM Formulation 111 2.6 Multi-Physical FEM Analysis 112 2.6.1 Multi-Physical FEM Formulation 113 2.6.2 Assembly Process 115 2.6.3 Coupling Strategies 116 2.6.3.1 Weak Coupling 117 2.6.3.2 Full/Strong Coupling 117 2.7 Stabilized FEM Formulations 118 2.7.1 Isotropic Diffusion 120 2.7.2 Streamline Upwind Petrov–Galerkin 121 2.7.3 Galerkin Least Squares 121 2.8 Conclusion 123 References 123 Part II Finite ElementModeling Techniques 125 3 Steady-State Isothermal Newtonian Line Contacts 127 3.1 Contact Configuration 127 3.2 Geometry, Computational Domains, and Meshing 128 3.2.1 Geometry 128 3.2.2 Computational Domains 128 3.2.3 Meshing and Discretization 130 3.3 Governing Equations and Boundary Conditions 132 3.3.1 Reynolds Equation 133 3.3.2 Linear Elasticity Equations 136 3.3.3 Load Balance Equation 138 3.4 FEM Model 138 3.4.1 Connectivity of Elements 139 3.4.2 Weak Form Formulation 139 3.4.3 Elementary Matrix Formulations 141 3.4.3.1 Elastic Part 142 3.4.3.2 Hydrodynamic Part 144 3.4.3.3 Load Balance Part 145 3.4.4 Stabilized Formulations 146 3.5 Overall Solution Procedure 150 3.6 Model Calibration and Preliminary Results 153 3.6.1 Mesh Sensitivity Analysis 153 3.6.2 Penalty Term Tuning 153 3.6.3 Solid Domain Size Calibration 156 3.6.4 Preliminary Results 157 3.7 Conclusion 161 References 161 4 Steady-State Isothermal Newtonian Point Contacts 165 4.1 Contact Configuration 165 4.2 Geometry, Computational Domains, and Meshing 166 4.2.1 Geometry 166 4.2.2 Computational Domains 166 4.2.3 Meshing and Discretization 169 4.3 Governing Equations and Boundary Conditions 170 4.3.1 Reynolds Equation 171 4.3.2 Linear Elasticity Equations 173 4.3.3 Load Balance Equation 174 4.4 FEM Model 175 4.4.1 Connectivity of Elements 175 4.4.2 Weak Form Formulation 176 4.4.3 Elementary Matrix Formulations 177 4.4.3.1 Elastic Part 178 4.4.3.2 Hydrodynamic Part 180 4.4.3.3 Load Balance Part 182 4.4.4 Stabilized Formulations 183 4.5 Overall Solution Procedure 187 4.6 Model Calibration and Preliminary Results 190 4.6.1 Mesh Sensitivity Analysis 190 4.6.2 Penalty Term Tuning 191 4.6.3 Preliminary Results 192 4.7 Conclusion 196 References 196 5 Steady-State Thermal Non-Newtonian Line Contacts 199 5.1 Contact Configuration 199 5.2 Geometry, Computational Domains, and Meshing 200 5.2.1 Geometry 200 5.2.2 Computational Domains 200 5.2.3 Meshing and Discretization 201 5.3 Governing Equations and Boundary Conditions 203 5.3.1 Generalized Reynolds Equation 204 5.3.2 Linear Elasticity Equations 205 5.3.3 Load Balance Equation 205 5.3.4 Energy Equations 205 5.3.5 Shear Stress Equation 207 5.4 FEM Model 208 5.4.1 Connectivity of Elements 208 5.4.2 Weak Form Formulation 210 5.4.3 Elementary Matrix Formulations 213 5.4.3.1 Elastic Part 215 5.4.3.2 Hydrodynamic Part 215 5.4.3.3 Load Balance Part 218 5.4.3.4 Thermal Part 219 5.4.3.5 Shear Stress Part 224 5.4.4 Stabilized Formulations 225 5.5 Overall Solution Procedure 227 5.6 Model Calibration and Preliminary Results 228 5.6.1 Mesh Sensitivity Analysis 230 5.6.2 Full versusWeak Coupling 230 5.6.3 Preliminary Results 239 5.7 Conclusion 240 References 241 6 Steady-State Thermal Non-Newtonian Point Contacts 243 6.1 Contact Configuration 243 6.2 Geometry, Computational Domains, and Meshing 244 6.2.1 Geometry 244 6.2.2 Computational Domains 244 6.2.3 Meshing and Discretization 245 6.3 Governing Equations and Boundary Conditions 247 6.3.1 Generalized Reynolds Equation 248 6.3.2 Linear Elasticity Equations 249 6.3.3 Load Balance Equation 249 6.3.4 Energy Equations 249 6.3.5 Shear Stress Equations 252 6.4 FEM Model 252 6.4.1 Connectivity of Elements 253 6.4.2 Weak Form Formulation 255 6.4.3 Elementary Matrix Formulations 258 6.4.3.1 Elastic Part 260 6.4.3.2 Hydrodynamic Part 261 6.4.3.3 Load Balance Part 264 6.4.3.4 Thermal Part 264 6.4.3.5 Shear Stress Part 270 6.4.4 Stabilized Formulations 273 6.5 Overall Solution Procedure 274 6.6 Model Calibration and Preliminary Results 275 6.6.1 Mesh Sensitivity Analysis 276 6.6.2 Preliminary Results 276 6.7 Conclusion 280 References 280 7 Transient Effects 281 7.1 Contact Configuration 281 7.2 Geometry, Computational Domains, and Meshing 281 7.3 Governing Equations, Boundary, and Initial Conditions 282 7.3.1 Reynolds Equation 282 7.3.2 Linear Elasticity Equations 284 7.3.3 Load Balance Equation 284 7.4 FEM Model 284 7.4.1 Connectivity of Elements 285 7.4.2 Weak Form Formulation 285 7.4.3 Elementary Matrix Formulations 286 7.4.3.1 Elastic Part 288 7.4.3.2 Hydrodynamic Part 288 7.4.3.3 Load Balance Part 289 7.5 Overall Solution Procedure 289 7.6 Preliminary Results 291 7.7 Conclusion 295 References 295 8 Model Order Reduction (MOR) Techniques 297 8.1 Introduction 297 8.2 Reduced Solution Space Techniques 299 8.2.1 Modal Reduction 302 8.2.2 Ritz-Vector-Like Method 303 8.2.3 EHL-Basis Technique 304 8.2.3.1 Typical Test Case Results 306 8.2.3.2 Performance Analysis: Reduced versus Full Model 310 8.3 Static Condensation with Splitting (SCS) 313 8.3.1 Static Condensation 315 8.3.2 Splitting 316 8.3.3 Overall Numerical Procedure 316 8.3.4 Results and Discussion 320 8.3.4.1 Typical Test Cases 320 8.3.4.2 Splitting Algorithm Tuning 321 8.3.4.3 Preservation of Solution Scheme Generality 327 8.3.4.4 Performance Analysis 329 8.4 Conclusion 335 References 337 Part III Applications 339 9 Pressure and Film Thickness Predictions 341 9.1 Introduction 341 9.2 Qualitative Parametric Analysis 341 9.2.1 Isothermal Newtonian Conditions 342 9.2.2 Thermal Non-Newtonian Conditions 345 9.3 Quantitative Predictions 348 9.4 Analytical FilmThickness Predictions 351 9.4.1 Numerical Experiments 352 9.4.2 Correction Factors and FilmThickness Formulas 353 9.4.3 Experimental Validation 355 9.5 Conclusion 357 References 359 10 Friction Predictions 361 10.1 Introduction 361 10.2 Quantitative Predictions 363 10.3 Friction Regimes 369 10.3.1 Relevant Dimensionless Numbers 370 10.3.1.1 Weissenberg Number 370 10.3.1.2 Nahme–Griffith Number 370 10.3.1.3 LSS Number 370 10.3.1.4 Roller Compliance Number 370 10.3.2 Delineation of Friction Regimes 371 10.3.2.1 Linear Regime 375 10.3.2.2 Nonlinear Viscous Regime 376 10.3.2.3 Plateau Regime 377 10.3.2.4 Thermoviscous Regime 378 10.3.3 Friction Regimes Chart 378 10.4 Conclusion 380 References 381 11 Coated EHL Contacts 383 11.1 Introduction 383 11.2 Modeling Subtleties 385 11.3 Influence of Coating Properties on EHL Contact Performance 388 11.3.1 Pressure and FilmThickness 389 11.3.2 Friction 391 11.3.3 Discussion 394 11.3.3.1 Influence of Coating Mechanical Properties 394 11.3.3.2 Influence of Coating Thermal Properties 396 11.4 Conclusion 402 References 403 Appendices 405 A Numerical Integration 407 A.1 Line Elements 412 A.2 Triangular Elements 412 A.3 Rectangular Elements 413 A.4 Tetrahedral Elements 414 A.5 Prism Elements 415 B Sparse Matrix Storage 417 B.1 Triplet Storage (TS) 418 B.2 Compressed Row Storage (CRS) 419 B.3 Compressed Column Storage (CCS) 419 C Shell T9 Lubricant Properties 423 C.1 Pressure and Temperature Dependence of Density 423 C.2 Pressure and Temperature Dependence of Viscosity 424 C.3 Shear Dependence of Viscosity 425 C.4 Pressure Dependence of Limiting Shear Stress 426 C.5 Pressure and Temperature Dependence ofThermal Properties 427 References 429 Index 431


Best Sellers


Product Details
  • ISBN-13: 9781119225126
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: John Wiley & Sons Inc
  • Height: 244 mm
  • No of Pages: 464
  • Returnable: N
  • Weight: 953 gr
  • ISBN-10: 1119225124
  • Publisher Date: 27 Apr 2018
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Spine Width: 31 mm
  • Width: 175 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Finite Element Modeling of Elastohydrodynamic Lubrication Problems
John Wiley & Sons Inc -
Finite Element Modeling of Elastohydrodynamic Lubrication Problems
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Finite Element Modeling of Elastohydrodynamic Lubrication Problems

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!