Materials for Solid State Lighting and Displays - Bookswagon
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Mechanical engineering and materials > Materials science > Materials for Solid State Lighting and Displays: (Wiley Series in Materials for Electronic & Optoelectronic Applications)
Materials for Solid State Lighting and Displays: (Wiley Series in Materials for Electronic & Optoelectronic Applications)

Materials for Solid State Lighting and Displays: (Wiley Series in Materials for Electronic & Optoelectronic Applications)


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

LEDs are in the midst of revolutionizing the lighting industry Up-to-date and comprehensive coverage of light-emitting materials and devices used in solid state lighting and displays  Presents the fundamental principles underlying luminescence Includes inorganic and organic materials and devices LEDs offer high efficiency, long life and mercury free lighting solutions

Table of Contents:
List of Contributors xi Series Preface xiii Preface xv Acknowledgments xvii About the Editor xix 1. Principles of Solid State Luminescence 1 Adrian Kitai 1.1 Introduction to Radiation from an Accelerating Charge 1 1.2 Radiation from an Oscillating Dipole 4 1.3 Quantum Description of an Electron during a Radiation Event 5 1.4 The Exciton 7 1.5 Two-Electron Atoms 10 1.6 Molecular Excitons 16 1.7 Band-to-Band Transitions 19 1.8 Photometric Units 23 1.9 The Light Emitting Diode 28 References 30 2. Quantum Dots for Displays and Solid State Lighting 31 Jesse R. Manders, Debasis Bera, Lei Qian and Paul H. Holloway 2.1 Introduction 31 2.2 Nanostructured Materials 34 2.3 Quantum Dots 35 2.3.1 History of Quantum Dots 36 2.3.2 Structure and Properties Relationship 36 2.3.3 Quantum Confinement Effects on Band Gap 38 2.4 Relaxation Process of Excitons 41 2.4.1 Radiative Relaxation 42 2.4.2 Nonradiative Relaxation Process 45 2.5 Blinking Effect 46 2.6 Surface Passivation 47 2.6.1 Organically Capped QDs 47 2.6.2 Inorganically Passivated QDs 48 2.7 Synthesis Processes 49 2.7.1 Top-Down Synthesis 49 2.7.2 Bottom-Up Approach 50 2.8 Optical Properties and Applications 53 2.8.1 Displays 53 2.8.2 Solid State Lighting 73 2.8.3 Biological Applications 78 2.9 Perspective 81 Acknowledgments 82 References 82 3. Color Conversion Phosphors for Light Emitting Diodes 91 Jack Silver, George R. Fern and Robert Withnall 3.1 Introduction 91 3.2 Disadvantages of Using LEDs Without Color Conversion Phosphors 93 3.3 Phosphors for Converting the Color of Light Emitted by LEDs 95 3.3.1 General Considerations 95 3.3.2 Requirements of Color Conversion Phosphors 95 3.3.3 Commonly Used Activators in Color Conversion Phosphors 97 3.3.4 Strategies for Generating White Light from LEDs 97 3.3.5 Outstanding Problems with Color Conversion Phosphors for LEDs 98 3.4 Survey of the Synthesis and Properties of Some Currently Available Color Conversion Phosphors 99 3.4.1 Phosphor synthesis 99 3.4.2 Metal Oxide Based Phosphors 99 3.4.3 Metal Sulfide Based Phosphors 113 3.4.4 Metal Nitrides 117 3.4.5 Alkaline Earth Metal Oxo-Nitrides 120 3.4.6 Metal Fluoride Phosphors 121 3.5 Multi-Phosphor pcLEDs 122 3.6 Quantum Dots 123 3.7 Laser Diodes 124 3.8 Conclusions 125 Acknowledgments 125 References 126 4. Nitride and Oxynitride Phosphors for Light Emitting Diodes 135 Le Wang and Rong-Jun Xie 4.1 Introduction 135 4.2 Synthesis of Nitride and Oxynitride Phosphors 138 4.2.1 Solid State Reaction Method 138 4.2.2 Gas Reduction and Nitridation 139 4.2.3 Carbothermal Reduction and Nitridation 140 4.2.4 Alloy Nitridation 140 4.2.5 Ammonothermal Synthesis 141 4.3 Photoluminescence Properties of Nitride and Oxynitride Phosphors 142 4.3.1 Luminescence Spectra of Typical Activators 142 4.4 Emerging Nitride Phosphors and Their Synthesis 165 4.4.1 Narrow-Band Red Nitride Phosphors 165 4.4.2 Narrow-Band Green Nitride Phosphors 167 4.5 Applications of Nitride Phosphors 169 4.5.1 General Lighting 169 4.5.2 LCD Backlight 172 References 173 5. Organic Light Emitting Device Materials for Displays 183 Tyler Davidson-Hall, Yoshitaka Kajiyama and Hany Aziz 5.1 Introduction to OLEDs and Organic Electroluminscent Materials 184 5.2 OLED Light Emitting Materials 186 5.2.1 Neat Emitters 187 5.2.2 Guest Emitters 192 5.2.3 Aggregate-Induced Emission 201 5.3 OLED Displays 203 5.3.1 RGB Color Patterning Approaches 203 5.3.2 Display Addressing Approaches 204 5.3.3 FMM Technology 207 5.3.4 Alternative Fabrication Techniques 208 5.3.5 Outlook on OLED Display Commercialization 212 5.4 Quantum Dot Light Emitting Devices 213 5.4.1 QD Optimization by Core–Shell Morphology 214 5.4.2 Organic Charge Transport QD-LEDs 215 5.4.3 Hybrid Organic–Inorganic Charge Transport QD-LEDs 217 5.4.4 Energy Transfer Enhanced QD-LEDs 219 5.4.5 QD-LED Lifetime 220 References 220 6. White-Light Emitting Materials for Organic Light-Emitting Diode-Based Displays and Lighting 231 Simone Lenk, Michael Thomschke and Sebastian Reineke 6.1 Introduction 231 6.2 White Organic Light-Emitting Diodes 233 6.3 Photometry and Radiometry 236 6.3.1 OLED Efficiencies 239 6.3.2 Color Stimulus Specification 239 6.3.3 Color Correlated Temperature 240 6.3.4 Color Rendering Index 241 6.3.5 White Light 241 6.4 Device Optics 242 6.4.1 Optical Properties of Thin Films 242 6.4.2 Optical Outcoupling 245 6.4.3 Top-Emitting OLEDs 247 6.4.4 Simulation Tools 248 6.5 Materials for Efficient White Electroluminescence 248 6.5.1 Spin Statistics for Electroluminescence 248 6.5.2 Fluorescence-Emitting Molecules 249 6.5.3 Advanced Concepts Comprising Fluorescent Emitters 251 6.5.4 Phosphorescence-Emitting Molecules 251 6.5.5 Single White-Light Emitting Phosphorescent Materials 256 6.5.6 Thermally Activated Delayed Fluorescence-Based Emitters 257 6.5.7 Phosphorescence Versus Thermally Activated Delayed Fluorescence 261 6.5.8 TADF Assisted Fluorescence (TAF) Emitters 263 6.6 Polymer Concepts 263 6.6.1 Various Concepts Involving Polymer Materials 265 6.6.2 Learning from High Performance Small Molecules for High Efficiency Polymers 267 6.7 Summary and Outlook 268 References 269 7. Light Emitting Diode Materials and Devices 273 Michael R. Krames 7.1 Introduction 273 7.2 Light Emitting Diode Basics 273 7.2.1 Construction 273 7.2.2 Recombination Processes 275 7.2.3 Heterojunctions 277 7.2.4 Quantum Wells 278 7.2.5 Current Injection 278 7.2.6 Forward voltage 280 7.3 Material Systems 280 7.3.1 Ga(As,P) 280 7.3.2 Ga(As,P):N 281 7.3.3 (Al,Ga)As 282 7.3.4 (Al,Ga)InP 282 7.3.5 (Ga,In)N 283 7.3.6 White Light Generation 285 7.4 Packaging Technologies 288 7.4.1 Low Power 288 7.4.2 Mid Power 288 7.4.3 High Power 289 7.4.4 Chip-On-Board LEDs 290 7.4.5 Multi-Color LEDs 290 7.4.6 Electrostatic Discharge Protection 290 7.5 Performance 291 7.5.1 Light Extraction Efficiency 291 7.5.2 Monochromatic Performance 292 7.5.3 White-Emitting Performance 298 7.5.4 Temperature Effects 306 7.5.5 Reliability 306 References 307 8. Alternating Current Thin Film and Powder Electroluminescence 313 Adrian Kitai 8.1 Introduction 313 8.2 Background of TFEL 314 8.2.1 Thick Film Dielectric EL Structure 315 8.2.2 Ceramic Sheet Dielectric EL 316 8.2.3 Sphere-Supported TFEL 316 8.3 Theory of Operation 317 8.4 Electroluminescent Phosphors 324 8.5 Thin Film Double-Insulating EL Devices 325 8.6 Current Status of TFEL 327 8.7 Background of AC Powder EL 328 8.8 Mechanism of Light Emission in AC Powder EL 329 8.9 Electroluminescence Characteristics of AC Powder EL Materials 333 8.10 Emission Spectra of AC Powder EL 334 8.11 Luminance Degradation 335 8.12 Moisture and Operating Environment 336 8.13 Current Status and Limitations of Powder EL 336 8.14 Research Directions in AC Powder EL and TFEL 336 References 337 Index 339

About the Author :
Adrian Kitai is Professor in Materials Science and Engineering at McMaster University, Canada.


Best Sellers


Product Details
  • ISBN-13: 9781119140603
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: Standards Information Network
  • Language: English
  • Series Title: Wiley Series in Materials for Electronic & Optoelectronic Applications
  • ISBN-10: 1119140609
  • Publisher Date: 15 Dec 2016
  • Binding: Digital (delivered electronically)
  • No of Pages: 384


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Materials for Solid State Lighting and Displays: (Wiley Series in Materials for Electronic & Optoelectronic Applications)
John Wiley & Sons Inc -
Materials for Solid State Lighting and Displays: (Wiley Series in Materials for Electronic & Optoelectronic Applications)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Materials for Solid State Lighting and Displays: (Wiley Series in Materials for Electronic & Optoelectronic Applications)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!