Derivatives Analytics with Python
Home > Business and Economics > Finance and accounting > Finance and the finance industry > Investment and securities > Derivatives Analytics with Python: Data Analysis, Models, Simulation, Calibration and Hedging(The Wiley Finance Series)
Derivatives Analytics with Python: Data Analysis, Models, Simulation, Calibration and Hedging(The Wiley Finance Series)

Derivatives Analytics with Python: Data Analysis, Models, Simulation, Calibration and Hedging(The Wiley Finance Series)

|
     0     
5
4
3
2
1




International Edition


About the Book

Supercharge options analytics and hedging using the power of Python Derivatives Analytics with Python shows you how to implement market-consistent valuation and hedging approaches using advanced financial models, efficient numerical techniques, and the powerful capabilities of the Python programming language. This unique guide offers detailed explanations of all theory, methods, and processes, giving you the background and tools necessary to value stock index options from a sound foundation. You'll find and use self-contained Python scripts and modules and learn how to apply Python to advanced data and derivatives analytics as you benefit from the 5,000+ lines of code that are provided to help you reproduce the results and graphics presented. Coverage includes market data analysis, risk-neutral valuation, Monte Carlo simulation, model calibration, valuation, and dynamic hedging, with models that exhibit stochastic volatility, jump components, stochastic short rates, and more. The companion website features all code and IPython Notebooks for immediate execution and automation. Python is gaining ground in the derivatives analytics space, allowing institutions to quickly and efficiently deliver portfolio, trading, and risk management results. This book is the finance professional's guide to exploiting Python's capabilities for efficient and performing derivatives analytics. Reproduce major stylized facts of equity and options markets yourself Apply Fourier transform techniques and advanced Monte Carlo pricing Calibrate advanced option pricing models to market data Integrate advanced models and numeric methods to dynamically hedge options Recent developments in the Python ecosystem enable analysts to implement analytics tasks as performing as with C or C++, but using only about one-tenth of the code or even less. Derivatives Analytics with Python — Data Analysis, Models, Simulation, Calibration and Hedging shows you what you need to know to supercharge your derivatives and risk analytics efforts.

Table of Contents:
List of Tables xi List of Figures xiii Preface xvii Chapter 1 A Quick Tour 1 1.1 Market-Based Valuation 1 1.2 Structure of the Book 2 1.3 Why Python? 3 1.4 Further Reading 4 Part One The Market Chapter 2 What is Market-Based Valuation? 9 2.1 Options and their Value 9 2.2 Vanilla vs. Exotic Instruments 13 2.3 Risks Affecting Equity Derivatives 14 2.3.1 Market Risks 14 2.3.2 Other Risks 15 2.4 Hedging 16 2.5 Market-Based Valuation as a Process 17 Chapter 3 Market Stylized Facts 19 3.1 Introduction 19 3.2 Volatility, Correlation and Co. 19 3.3 Normal Returns as the Benchmark Case 21 3.4 Indices and Stocks 25 3.4.1 Stylized Facts 25 3.4.2 DAX Index Returns 26 3.5 Option Markets 30 3.5.1 Bid/Ask Spreads 31 3.5.2 Implied Volatility Surface 31 3.6 Short Rates 33 3.7 Conclusions 36 3.8 Python Scripts 37 3.8.1 GBM Analysis 37 3.8.2 DAX Analysis 40 3.8.3 BSM Implied Volatilities 41 3.8.4 EURO STOXX 50 Implied Volatilities 43 3.8.5 Euribor Analysis 45 Part Two Theoretical Valuation Chapter 4 Risk-Neutral Valuation 49 4.1 Introduction 49 4.2 Discrete-Time Uncertainty 50 4.3 Discrete Market Model 54 4.3.1 Primitives 54 4.3.2 Basic Definitions 55 4.4 Central Results in Discrete Time 57 4.5 Continuous-Time Case 61 4.6 Conclusions 66 4.7 Proofs 66 4.7.1 Proof of Lemma 1 66 4.7.2 Proof of Proposition 1 67 4.7.3 Proof of Theorem 1 68 Chapter 5 Complete Market Models 71 5.1 Introduction 71 5.2 Black-Scholes-Merton Model 72 5.2.1 Market Model 72 5.2.2 The Fundamental PDE 72 5.2.3 European Options 74 5.3 Greeks in the BSM Model 76 5.4 Cox-Ross-Rubinstein Model 81 5.5 Conclustions 84 5.6 Proofs and Python Scripts 84 5.6.1 Itô’s Lemma 84 5.6.2 Script for BSM Option Valuation 85 5.6.3 Script for BSM Call Greeks 88 5.6.4 Script for CRR Option Valuation 92 Chapter 6 Fourier-Based Option Pricing 95 6.1 Introduction 95 6.2 The Pricing Problem 96 6.3 Fourier Transforms 97 6.4 Fourier-Based Option Pricing 98 6.4.1 Lewis (2001) Approach 98 6.4.2 Carr-Madan (1999) Approach 101 6.5 Numerical Evaluation 103 6.5.1 Fourier Series 103 6.5.2 Fast Fourier Transform 105 6.6 Applications 107 6.6.1 Black-Scholes-Merton (1973) Model 107 6.6.2 Merton (1976) Model 108 6.6.3 Discrete Market Model 110 6.7 Conclusions 114 6.8 Python Scripts 114 6.8.1 BSM Call Valuation via Fourier Approach 114 6.8.2 Fourier Series 119 6.8.3 Roots of Unity 120 6.8.4 Convolution 121 6.8.5 Module with Parameters 122 6.8.6 Call Value by Convolution 123 6.8.7 Option Pricing by Convolution 123 6.8.8 Option Pricing by DFT 124 6.8.9 Speed Test of DFT 125 Chapter 7 Valuation of American Options by Simulation 127 7.1 Introduction 127 7.2 Financial Model 128 7.3 American Option Valuation 128 7.3.1 Problem Formulations 128 7.3.2 Valuation Algorithms 130 7.4 Numerical Results 132 7.4.1 American Put Option 132 7.4.2 American Short Condor Spread 135 7.5 Conclusions 136 7.6 Python Scripts 137 7.6.1 Binomial Valuation 137 7.6.2 Monte Carlo Valuation with LSM 139 7.6.3 Primal and Dual LSM Algorithms 140 Part Three Market-Based Valuation Chapter 8 A First Example of Market-Based Valuation 147 8.1 Introduction 147 8.2 Market Model 147 8.3 Valuation 148 8.4 Calibration 149 8.5 Simulation 149 8.6 Conclusions 155 8.7 Python Scripts 155 8.7.1 Valuation by Numerical Integration 155 8.7.2 Valuation by FFT 157 8.7.3 Calibration to Three Maturities 160 8.7.4 Calibration to Short Maturity 163 8.7.5 Valuation by MCS 165 Chapter 9 General Model Framework 169 9.1 Introduction 169 9.2 The Framework 169 9.3 Features of the Framework 170 9.4 Zero-Coupon Bond Valuation 172 9.5 European Option Valuation 173 9.5.1 PDE Approach 173 9.5.2 Transform Methods 175 9.5.3 Monte Carlo Simulation 176 9.6 Conclusions 177 9.7 Proofs and Python Scripts 177 9.7.1 Itô’s Lemma 177 9.7.2 Python Script for Bond Valuation 178 9.7.3 Python Script for European Call Valuation 180 Chapter 10 Monte Carlo Simulation 187 10.1 Introduction 187 10.2 Valuation of Zero-Coupon Bonds 188 10.3 Valuation of European Options 192 10.4 Valuation of American Options 196 10.4.1 Numerical Results 198 10.4.2 Higher Accuracy vs. Lower Speed 201 10.5 Conclusions 203 10.6 Python Scripts 204 10.6.1 General Zero-Coupon Bond Valuation 204 10.6.2 CIR85 Simulation and Valuation 205 10.6.3 Automated Valuation of European Options by Monte Carlo Simulation 209 10.6.4 Automated Valuation of American Put Options by Monte Carlo Simulation 215 Chapter 11 Model Calibration 223 11.1 Introduction 223 11.2 General Considerations 223 11.2.1 Why Calibration at All? 224 11.2.2 Which Role Do Different Model Components Play? 226 11.2.3 What Objective Function? 227 11.2.4 What Market Data? 228 11.2.5 What Optimization Algorithm? 229 11.3 Calibration of Short Rate Component 230 11.3.1 Theoretical Foundations 230 11.3.2 Calibration to Euribor Rates 231 11.4 Calibration of Equity Component 233 11.4.1 Valuation via Fourier Transform Method 235 11.4.2 Calibration to EURO STOXX 50 Option Quotes 236 11.4.3 Calibration of H93 Model 236 11.4.4 Calibration of Jump Component 237 11.4.5 Complete Calibration of BCC97 Model 239 11.4.6 Calibration to Implied Volatilities 240 11.5 Conclusions 243 11.6 Python Scripts for Cox-Ingersoll-Ross Model 243 11.6.1 Calibration of CIR85 243 11.6.2 Calibration of H93 Stochastic Volatility Model 248 11.6.3 Comparison of Implied Volatilities 251 11.6.4 Calibration of Jump-Diffusion Part of BCC97 252 11.6.5 Calibration of Complete Model of BCC97 256 11.6.6 Calibration of BCC97 Model to Implied Volatilities 258 Chapter 12 Simulation and Valuation in the General Model Framework 263 12.1 Introduction 263 12.2 Simulation of BCC97 Model 263 12.3 Valuation of Equity Options 266 12.3.1 European Options 266 12.3.2 American Options 268 12.4 Conclusions 268 12.5 Python Scripts 269 12.5.1 Simulating the BCC97 Model 269 12.5.2 Valuation of European Call Options by MCS 274 12.5.3 Valuation of American Call Options by MCS 275 Chapter 13 Dynamic Hedging 279 13.1 Introduction 279 13.2 Hedging Study for BSM Model 280 13.3 Hedging Study for BCC97 Model 285 13.4 Conclusions 289 13.5 Python Scripts 289 13.5.1 LSM Delta Hedging in BSM (Single Path) 289 13.5.2 LSM Delta Hedging in BSM (Multiple Paths) 293 13.5.3 LSM Algorithm for American Put in BCC97 295 13.5.4 LSM Delta Hedging in BCC97 (Single Path) 300 Chapter 14 Executive Summary 303 Appendix A Python in a Nutshell 305 A.1 Python Fundamentals 305 A.1.1 Installing Python Packages 305 A.1.2 First Steps with Python 306 A.1.3 Array Operations 310 A.1.4 Random Numbers 313 A.1.5 Plotting 314 A.2 European Option Pricing 316 A.2.1 Black-Scholes-Merton Approach 316 A.2.2 Cox-Ross-Rubinstein Approach 318 A.2.3 Monte Carlo Approach 323 A.3 Selected Financial Topics 325 A.3.1 Approximation 325 A.3.2 Optimization 328 A.3.3 Numerical Integration 329 A.4 Advanced Python Topics 330 A.4.1 Classes and Objects 330 A.4.2 Basic Input-Output Operations 332 A.4.3 Interacting with Spreadsheets 334 A.5 Rapid Financial Engineering 336 Bibliography 341 Index 347


Best Sellers


Product Details
  • ISBN-13: 9781119037996
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: John Wiley & Sons Inc
  • Height: 246 mm
  • No of Pages: 384
  • Returnable: N
  • Spine Width: 28 mm
  • Weight: 794 gr
  • ISBN-10: 1119037999
  • Publisher Date: 10 Jul 2015
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Series Title: The Wiley Finance Series
  • Sub Title: Data Analysis, Models, Simulation, Calibration and Hedging
  • Width: 175 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Derivatives Analytics with Python: Data Analysis, Models, Simulation, Calibration and Hedging(The Wiley Finance Series)
John Wiley & Sons Inc -
Derivatives Analytics with Python: Data Analysis, Models, Simulation, Calibration and Hedging(The Wiley Finance Series)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Derivatives Analytics with Python: Data Analysis, Models, Simulation, Calibration and Hedging(The Wiley Finance Series)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!