Introduction to Computation and Modeling for Differential Equations
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Mathematics > Calculus and mathematical analysis > Differential calculus and equations > Introduction to Computation and Modeling for Differential Equations
Introduction to Computation and Modeling for Differential Equations

Introduction to Computation and Modeling for Differential Equations


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Uses mathematical, numerical, and programming tools to solve differential equations for physical phenomena and engineering problems Introduction to Computation and Modeling for Differential Equations, Second Edition features the essential principles and applications of problem solving across disciplines such as engineering, physics, and chemistry. The Second Edition integrates the science of solving differential equations with mathematical, numerical, and programming tools, specifically with methods involving ordinary differential equations; numerical methods for initial value problems (IVPs); numerical methods for boundary value problems (BVPs); partial differential equations (PDEs); numerical methods for parabolic, elliptic, and hyperbolic PDEs; mathematical modeling with differential equations; numerical solutions; and finite difference and finite element methods. The author features a unique “Five-M” approach: Modeling, Mathematics, Methods, MATLAB®, and Multiphysics, which facilitates a thorough understanding of how models are created and preprocessed mathematically with scaling, classification, and approximation and also demonstrates how a problem is solved numerically using the appropriate mathematical methods. With numerous real-world examples to aid in the visualization of the solutions, Introduction to Computation and Modeling for Differential Equations, Second Edition includes: New sections on topics including variational formulation, the finite element method, examples of discretization, ansatz methods such as Galerkin’s method for BVPs, parabolic and elliptic PDEs, and finite volume methods Numerous practical examples with applications in mechanics, fluid dynamics, solid mechanics, chemical engineering, heat conduction, electromagnetic field theory, and control theory, some of which are solved with computer programs MATLAB and COMSOL Multiphysics® Additional exercises that introduce new methods, projects, and problems to further illustrate possible applications A related website with select solutions to the exercises, as well as the MATLAB data sets for ordinary differential equations (ODEs) and PDEs Introduction to Computation and Modeling for Differential Equations, Second Edition is a useful textbook for upper-undergraduate and graduate-level courses in scientific computing, differential equations, ordinary differential equations, partial differential equations, and numerical methods. The book is also an excellent self-study guide for mathematics, science, computer science, physics, and engineering students, as well as an excellent reference for practitioners and consultants who use differential equations and numerical methods in everyday situations.  

Table of Contents:
Preface xi 1 Introduction 1 1.1 What is a Differential Equation? 1 1.2 Examples of an Ordinary and a Partial Differential Equation, 2 1.3 Numerical Analysis, a Necessity for Scientific Computing, 5 1.4 Outline of the Contents of this Book, 8 Bibliography, 10 2 Ordinary Differential Equations 11 2.1 Problem Classification, 11 2.2 Linear Systems of ODEs with Constant Coefficients, 16 2.3 Some Stability Concepts for ODEs, 19 2.3.1 Stability for a Solution Trajectory of an ODE System, 20 2.3.2 Stability for Critical Points of ODE Systems, 23 2.4 Some ODE models in Science and Engineering, 26 2.4.1 Newton’s Second Law, 26 2.4.2 Hamilton’s Equations, 27 2.4.3 Electrical Networks, 27 2.4.4 Chemical Kinetics, 28 2.4.5 Control Theory, 29 2.4.6 Compartment Models, 29 2.5 Some Examples from Applications, 30 Bibliography, 36 3 Numerical Methods for Initial Value Problems 37 3.1 Graphical Representation of Solutions, 38 3.2 Basic Principles of Numerical Approximation of ODEs, 40 3.3 Numerical Solution of IVPs with Euler’s method, 41 3.3.1 Euler’s Explicit Method: Accuracy, 43 3.3.2 Euler’s Explicit Method: Improving the Accuracy, 46 3.3.3 Euler’s Explicit Method: Stability, 48 3.3.4 Euler’s Implicit Method, 53 3.3.5 The Trapezoidal Method, 55 3.4 Higher Order Methods for the IVP, 56 3.4.1 Runge–Kutta Methods, 56 3.4.2 Linear Multistep Methods, 60 3.5 Special Methods for Special Problems, 62 3.5.1 Preserving Linear and Quadratic Invariants, 62 3.5.2 Preserving Positivity of the Numerical Solution, 64 3.5.3 Methods for Newton’s Equations of Motion, 64 3.6 The Variational Equation and Parameter Fitting in IVPs, 66 Bibliography, 69 4 Numerical Methods for Boundary Value Problems 71 4.1 Applications, 73 4.2 Difference Methods for BVPs, 78 4.2.1 A Model Problem for BVPs, Dirichlet’s BCs, 79 4.2.2 A Model Problem for BVPs, Mixed BCs, 83 4.2.3 Accuracy, 86 4.2.4 Spurious Solutions, 87 4.2.5 Linear Two-Point BVPs, 89 4.2.6 Nonlinear Two-Point BVPs, 91 4.2.7 The Shooting Method, 92 4.3 Ansatz Methods for BVPs, 94 4.3.1 Starting with the ODE Formulation, 95 4.3.2 Starting with the Weak Formulation, 96 4.3.3 The Finite Element Method, 100 Bibliography, 103 5 Partial Differential Equations 105 5.1 Classical PDE Problems, 106 5.2 Differential Operators Used for PDEs, 110 5.3 Some PDEs in Science and Engineering, 114 5.3.1 Navier–Stokes Equations for Incompressible Flow, 114 5.3.2 Euler’s Equations for Compressible Flow, 115 5.3.3 The Convection–Diffusion–Reaction Equations, 116 5.3.4 The Heat Equation, 117 5.3.5 The Diffusion Equation, 117 5.3.6 Maxwell’s Equations for the Electromagnetic Field, 117 5.3.7 Acoustic Waves, 118 5.3.8 Schrödinger’s Equation in Quantum Mechanics, 119 5.3.9 Navier’s Equations in Structural Mechanics, 119 5.3.10 Black–Scholes Equation in Financial Mathematics, 120 5.4 Initial and Boundary Conditions for PDEs, 121 5.5 Numerical Solution of PDEs, Some General Comments, 121 Bibliography, 122 6 Numerical Methods for Parabolic Partial Differential Equations 123 6.1 Applications, 125 6.2 An Introductory Example of Discretization, 127 6.3 The Method of Lines for Parabolic PDEs, 130 6.3.1 Solving the Test Problem with MoL, 130 6.3.2 Various Types of Boundary Conditions, 134 6.3.3 An Example of the Use of MoL for a Mixed Boundary Condition, 135 6.4 Generalizations of the Heat Equation, 136 6.4.1 The Heat Equation with Variable Conductivity, 136 6.4.2 The Convection – Diffusion – Reaction PDE, 138 6.4.3 The General Nonlinear Parabolic PDE, 138 6.5 Ansatz Methods for the Model Equation, 139 Bibliography, 140 7 Numerical Methods for Elliptic Partial Differential Equations 143 7.1 Applications, 145 7.2 The Finite Difference Method, 150 7.3 Discretization of a Problem with Different BCs, 154 7.4 Ansatz Methods for Elliptic PDEs, 156 7.4.1 Starting with the PDE Formulation, 156 7.4.2 Starting with the Weak Formulation, 158 7.4.3 The Finite Element Method, 159 Bibliography, 164 8 Numerical Methods for Hyperbolic PDEs 165 8.1 Applications, 171 8.2 Numerical Solution of Hyperbolic PDEs, 174 8.2.1 The Upwind Method (FTBS), 175 8.2.2 The FTFS Method, 177 8.2.3 The FTCS Method, 178 8.2.4 The Lax–Friedrichs Method, 178 8.2.5 The Leap-Frog Method, 179 8.2.6 The Lax–Wendroff Method, 179 8.2.7 Numerical Method for the Wave Equation, 181 8.3 The Finite Volume Method, 183 8.4 Some Examples of Stability Analysis for Hyperbolic PDEs, 185 Bibliography, 187 9 Mathematical Modeling with Differential Equations 189 9.1 Nature Laws, 190 9.2 Constitutive Equations, 192 9.2.1 Equations in Heat Transfer Problems, 192 9.2.2 Equations in Mass Diffusion Problems, 193 9.2.3 Equations in Mechanical Moment Diffusion Problems, 193 9.2.4 Equations in Elastic Solid Mechanics Problems, 194 9.2.5 Equations in Chemical Reaction Engineering Problems, 194 9.2.6 Equations in Electrical Engineering Problems, 195 9.3 Conservative Equations, 195 9.3.1 Some Examples of Lumped Models, 196 9.3.2 Some Examples of Distributed Models, 197 9.4 Scaling of Differential Equations to Dimensionless Form, 201 Bibliography, 204 10 Applied Projects on Differential Equations 205 Project 1 Signal propagation in a long electrical conductor, 205 Project 2 Flow in a cylindrical pipe, 206 Project 3 Soliton waves, 208 Project 4 Wave scattering in a waveguide, 209 Project 5 Metal block with heat sourse and thermometer, 210 Project 6 Deformation of a circular metal plate, 211 Project 7 Cooling of a chrystal glass, 212 Project 8 Rotating fluid in a cylinder, 212 Appendix A Some Numerical and Mathematical Tools 215 A.1 Newton’s Method for Systems of Nonlinear Algebraic Equations, 215 A.1.1 Quadratic Systems, 215 A.1.2 Overdetermined Systems, 218 A.2 Some Facts about Linear Difference Equations, 219 A.3 Derivation of Difference Approximations, 223 Bibliography, 225 A.4 The Interpretations of Grad, Div, and Curl, 225 A.5 Numerical Solution of Algebraic Systems of Equations, 229 A.5.1 Direct Methods, 229 A.5.2 Iterative Methods for Linear Systems of Equations, 233 A.6 Some Results for Fourier Transforms, 237 Bibliography, 239 Appendix B Software for Scientific Computing 241 B.1 MATLAB, 242 B.1.1 Chapter 3: IVPs, 242 B.1.2 Chapter 4: BVPs, 244 B.1.3 Chapter 6: Parabolic PDEs, 245 B.1.4 Chapter 7: Elliptic PDEs, 246 B.1.5 Chapter 8: Hyperbolic PDEs, 246 B.2 COMSOL MULTIPHYSICS, 247 Bibliography and Resources, 249 Appendix C Computer Exercises to Support the Chapters 251 C.1 Computer Lab 1 Supporting Chapter 2, 251 C.1.1 ODE Systems of LCC Type and Stability, 251 C.2 Computer Lab 2 Supporting Chapter 3, 254 C.2.1 Numerical Solution of Initial Value Problems, 254 C.3 Computer Lab 3 Supporting Chapter 4, 257 C.3.1 Numerical Solution of a Boundary Value Problem, 257 C.4 Computer Lab 4 Supporting Chapter 6, 258 C.4.1 Partial Differential Equation of Parabolic Type, 258 C.5 Computer Lab 5 Supporting Chapter 7, 261 C.5.1 Numerical Solution of Elliptic PDE Problems, 261 C.6 Computer Lab 6 Supporting Chapter 8, 263 C.6.1 Numerical Experiments with the Hyperbolic Model PDE Problem, 263 Index 265

About the Author :
LENNART EDSBERG, PhD, is Associate Professor in the Numerical Analysis section within the Department of Mathematics at KTH-The Royal Institute of Technology in Stockholm, Sweden, where he has also been Director of the International Master Program in Scientific Computing since 1998-2008. Dr. Edsberg has over 30 years of academic experience and is the author of over 20 journal articles in the areas of numerical methods and differential equations.


Best Sellers


Product Details
  • ISBN-13: 9781119018452
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: Standards Information Network
  • Edition: Revised edition
  • No of Pages: 288
  • ISBN-10: 1119018455
  • Publisher Date: 26 Oct 2015
  • Binding: Digital (delivered electronically)
  • Language: English


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Introduction to Computation and Modeling for Differential Equations
John Wiley & Sons Inc -
Introduction to Computation and Modeling for Differential Equations
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Introduction to Computation and Modeling for Differential Equations

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!