Digital Control of High-Frequency Switched-Mode Power Converters
Home > Science, Technology & Agriculture > Energy technology and engineering > Electrical engineering > Digital Control of High-Frequency Switched-Mode Power Converters: (IEEE Press Series on Power and Energy Systems)
Digital Control of High-Frequency Switched-Mode Power Converters: (IEEE Press Series on Power and Energy Systems)

Digital Control of High-Frequency Switched-Mode Power Converters: (IEEE Press Series on Power and Energy Systems)

|
     0     
5
4
3
2
1




International Edition


About the Book

This book is focused on the fundamental aspects of analysis, modeling and design of digital control loops around high-frequency switched-mode power converters in a systematic and rigorous manner Comprehensive treatment of digital control theory for power converters Verilog and VHDL sample codes are provided Enables readers to successfully analyze, model, design, and implement voltage, current, or multi-loop digital feedback loops around switched-mode power converters Practical examples are used throughout the book to illustrate applications of the techniques developed Matlab examples are also provided

Table of Contents:
Preface ix Introduction 1 Chapter 1 Continuous-Time Averaged Modeling of DC–DC Converters 13 1.1 Pulse Width Modulated Converters 14 1.2 Converters in Steady State 16 1.2.1 Boost Converter Example 17 1.2.2 Estimation of the Switching Ripple 19 1.2.3 Voltage Conversion Ratios of Basic Converters 20 1.3 Converter Dynamics and Control 21 1.3.1 Converter Averaging and Linearization 22 1.3.2 Modeling of the Pulse Width Modulator 24 1.3.3 The System Loop Gain 25 1.3.4 Averaged Small-Signal Models of Basic Converters 26 1.4 State-Space Averaging 28 1.4.1 Converter Steady-State Operating Point 28 1.4.2 Averaged Small-Signal State-Space Model 29 1.4.3 Boost Converter Example 30 1.5 Design Examples 32 1.5.1 Voltage-Mode Control of a Synchronous Buck Converter 32 1.5.2 Average Current-Mode Control of a Boost Converter 42 1.6 Duty Ratio d[k] Versus d(t) 48 1.7 Summary of Key Points 50 Chapter 2 The Digital Control Loop 51 2.1 Case Study: Digital Voltage-Mode Control 52 2.2 A/D Conversion 53 2.2.1 Sampling Rate 53 2.2.2 Amplitude Quantization 56 2.3 The Digital Compensator 58 2.4 Digital Pulse Width Modulation 63 2.5 Loop Delays 65 2.5.1 Control Delays 65 2.5.2 Modulation Delay 66 2.5.3 Total Loop Delay 70 2.6 Use of Averaged Models in Digital Control Design 71 2.6.1 Limitations of Averaged Modeling 71 2.6.2 Averaged Modeling of a Digitally Controlled Converter 74 2.7 Summary of Key Points 78 Chapter 3 Discrete-Time Modeling 79 3.1 Discrete-Time Small-Signal Modeling 80 3.1.1 A Preliminary Example: A Switched Inductor 82 3.1.2 The General Case 85 3.1.3 Discrete-Time Models for Basic Types of PWM Modulation 87 3.2 Discrete-Time Modeling Examples 88 3.2.1 Synchronous Buck Converter 90 3.2.2 Boost Converter 97 3.3 Discrete-Time Modeling of Time-Invariant Topologies 102 3.3.1 Equivalence to Discrete-Time Modeling 106 3.3.2 Relationship with the Modified Z-Transform 108 3.3.3 Calculation of Tu(z) 108 3.3.4 Buck Converter Example Revisited 112 3.4 Matlab® Discrete-Time Modeling of Basic Converters 112 3.5 Summary of Key Points 117 Chapter 4 Digital Control 119 4.1 System-Level Compensator Design 119 4.1.1 Direct-Digital Design Using the Bilinear Transform Method 120 4.1.2 Digital PID Compensators in the z- and the p-Domains 123 4.2 Design Examples 126 4.2.1 Digital Voltage-Mode Control of a Synchronous Buck Converter 126 4.2.2 Digital Current-Mode Control of a Boost Converter 134 4.2.3 Multiloop Control of a Synchronous Buck Converter 136 4.2.4 Boost Power Factor Corrector 141 4.3 Other Converter Transfer Functions 154 4.4 Actuator Saturation and Integral Anti-Windup Provisions 160 4.5 Summary of Key Points 165 Chapter 5 Amplitude Quantization 167 5.1 System Quantizations 167 5.1.1 A/D Converter 167 5.1.2 DPWM Quantization 169 5.2 Steady-State Solution 172 5.3 No-Limit-Cycling Conditions 175 5.3.1 DPWM versus A/D Resolution 175 5.3.2 Integral Gain 178 5.3.3 Dynamic Quantization Effects 181 5.4 DPWM and A/D Implementation Techniques 182 5.4.1 DPWM Hardware Implementation Techniques 182 5.4.2 Effective DPWM Resolution Improvements via ΣΔ Modulation 186 5.4.3 A/D Converters 187 5.5 Summary of Key Points 190 Chapter 6 Compensator Implementation 191 6.1 PID Compensator Realizations 194 6.2 Coefficient Scaling and Quantization 197 6.2.1 Coefficients Scaling 198 6.2.2 Coefficients Quantization 200 6.3 Voltage-Mode Control Example: Coefficients Quantization 203 6.3.1 Parallel Structure 204 6.3.2 Direct Structure 206 6.3.3 Cascade Structure 208 6.4 Fixed-Point Controller Implementation 213 6.4.1 Effective Dynamic Range and Hardware Dynamic Range 214 6.4.2 Upper Bound of a Signal and the L1-Norm 216 6.5 Voltage-Mode Converter Example: Fixed-Point Implementation 218 6.5.1 Parallel Realization 220 6.5.2 Direct Realization 225 6.5.3 Cascade Realization 229 6.5.4 Linear versus Quantized System Response 233 6.6 HDL Implementation of the Controller 234 6.6.1 VHDL Example 235 6.6.2 Verilog Example 237 6.7 Summary of Key Points 239 Chapter 7 Digital Autotuning 241 7.1 Introduction to Digital Autotuning 242 7.2 Programmable PID Structures 243 7.3 Autotuning VIA Injection of a Digital Perturbation 247 7.3.1 Theory of Operation 249 7.3.2 Implementation of a PD Autotuner 253 7.3.3 Simulation Example 255 7.3.4 Small-Signal Analysis of the PD Autotuning Loop 261 7.4 Digital Autotuning Based on Relay Feedback 265 7.4.1 Theory of Operation 266 7.4.2 Implementation of a Digital Relay Feedback Autotuner 267 7.4.3 Simulation Example 271 7.5 Implementation Issues 272 7.6 Summary of Key Points 275 Appendix A Discrete-Time Linear Systems and The Z-Transform 277 A.1 Difference Equations 277 A.1.1 Forced Response 278 A.1.2 Free Response 279 A.1.3 Impulse Response and System Modes 281 A.1.4 Asymptotic Behavior of the Modes 282 A.1.5 Further Examples 283 A.2 Z-Transform 284 A.2.1 Definition 284 A.2.2 Properties 285 A.3 The Transfer Function 287 A.3.1 Stability 287 A.3.2 Frequency Response 288 A.4 State-Space Representation 288 Appendix B Fixed-Point Arithmetic and HDL Coding 291 B.1 Rounding Operation and Round-Off Error 291 B.2 Floating-Point versus Fixed-Point Arithmetic Systems 293 B.3 Binary Two’s Complement (B2C) Fixed-Point Representation 294 B.4 Signal Notation 296 B.5 Manipulation of B2C Quantities and HDL Examples 297 B.5.1 Sign Extension 298 B.5.2 Alignment 299 B.5.3 Sign Reversal 301 B.5.4 LSB and MSB Truncation 302 B.5.5 Addition and Subtraction 304 B.5.6 Multiplication 305 B.5.7 Overflow Detection and Saturated Arithmetic 307 Appendix C Small-Signal Phase Lag of Uniformly Sampled Pulse Width Modulators 313 C.1 Trailing-Edge Modulators 313 C.2 Leading-Edge Modulators 317 C.3 Symmetrical Modulators 318 References 321 Index 335


Best Sellers


Product Details
  • ISBN-13: 9781118935101
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: Wiley-IEEE Press
  • Height: 239 mm
  • No of Pages: 368
  • Returnable: N
  • Spine Width: 25 mm
  • Width: 160 mm
  • ISBN-10: 1118935101
  • Publisher Date: 14 Aug 2015
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Series Title: IEEE Press Series on Power and Energy Systems
  • Weight: 612 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Digital Control of High-Frequency Switched-Mode Power Converters: (IEEE Press Series on Power and Energy Systems)
John Wiley & Sons Inc -
Digital Control of High-Frequency Switched-Mode Power Converters: (IEEE Press Series on Power and Energy Systems)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Digital Control of High-Frequency Switched-Mode Power Converters: (IEEE Press Series on Power and Energy Systems)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!