Information Fusion in Signal and Image Processing
Home > Computing and Information Technology > Computer science > Digital signal processing (DSP) > Information Fusion in Signal and Image Processing: Major Probabilistic and Non-Probabilistic Numerical Approaches
Information Fusion in Signal and Image Processing: Major Probabilistic and Non-Probabilistic Numerical Approaches

Information Fusion in Signal and Image Processing: Major Probabilistic and Non-Probabilistic Numerical Approaches


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

The area of information fusion has grown considerably during the last few years, leading to a rapid and impressive evolution. In such fast-moving times, it is important to take stock of the changes that have occurred. As such, this books offers an overview of the general principles and specificities of information fusion in signal and image processing, as well as covering the main numerical methods (probabilistic approaches, fuzzy sets and possibility theory and belief functions).

Table of Contents:
Preface 11 Isabelle BLOCH Chapter 1. Definitions 13 Isabelle BLOCH and Henri MAÎTRE 1.1. Introduction 13 1.2. Choosing a definition 13 1.3. General characteristics of the data 16 1.4. Numerical/symbolic 19 1.4.1. Data and information 19 1.4.2. Processes 19 1.4.3. Representations 20 1.5. Fusion systems 20 1.6. Fusion in signal and image processing and fusion in other fields 22 1.7. Bibliography 23 Chapter 2. Fusion in Signal Processing 25 Jean-Pierre LE CADRE, Vincent NIMIER and Roger REYNAUD 2.1. Introduction 25 2.2. Objectives of fusion in signal processing 27 2.2.1. Estimation and calculation of a law a posteriori 28 2.2.2. Discriminating between several hypotheses and identifying 31 2.2.3. Controlling and supervising a data fusion chain 34 2.3. Problems and specificities of fusion in signal processing 37 2.3.1. Dynamic control 37 2.3.2. Quality of the information 42 2.3.3. Representativeness and accuracy of learning and a priori information 43 2.4. Bibliography 43 Chapter 3. Fusion in Image Processing 47 Isabelle BLOCH and Henri MAÎTRE 3.1. Objectives of fusion in image processing 47 3.2. Fusion situations 50 3.3. Data characteristics in image fusion 51 3.4. Constraints 54 3.5. Numerical and symbolic aspects in image fusion 55 3.6. Bibliography 56 Chapter 4. Fusion in Robotics 57 Michèle ROMBAUT 4.1. The necessity for fusion in robotics 57 4.2. Specific features of fusion in robotics 58 4.2.1.Constraints on the perception system 58 4.2.2. Proprioceptive and exteroceptive sensors 58 4.2.3. Interaction with the operator and symbolic interpretation 59 4.2.4. Time constraints 59 4.3. Characteristics of the data in robotics 61 4.3.1. Calibrating and changing the frame of reference 61 4.3.2. Types and levels of representation of the environment 62 4.4. Data fusion mechanisms 63 4.5. Bibliography 64 Chapter 5. Information and Knowledge Representation in Fusion Problems 65 Isabelle BLOCH and Henri MAÎTRE 5.1. Introduction 65 5.2. Processing information in fusion 65 5.3. Numerical representations of imperfect knowledge 67 5.4. Symbolic representation of imperfect knowledge 68 5.5. Knowledge-based systems 69 5.6. Reasoning modes and inference 73 5.7. Bibliography 74 Chapter 6. Probabilistic and Statistical Methods 77 Isabelle BLOCH, Jean-Pierre LE CADRE and Henri MAÎTRE 6.1. Introduction and general concepts 77 6.2. Information measurements 77 6.3. Modeling and estimation 79 6.4. Combination in a Bayesian framework 80 6.5. Combination as an estimation problem 80 6.6. Decision 81 6.7. Other methods in detection 81 6.8. An example of Bayesian fusion in satellite imagery 82 6.9. Probabilistic fusion methods applied to target motion analysis 84 6.9.1. General presentation 84 6.9.2. Multi-platform target motion analysis 95 6.9.3. Target motion analysis by fusion of active and passive measurements 96 6.9.4. Detection of a moving target in a network of sensors 98 6.10. Discussion 101 6.11. Bibliography 104 Chapter 7. Belief Function Theory 107 Isabelle BLOCH 7.1. General concept and philosophy of the theory 107 7.2. Modeling 108 7.3. Estimation of mass functions 111 7.3.1. Modification of probabilistic models 112 7.3.2. Modification of distance models 114 7.3.3. A priori information on composite focal elements (disjunctions) 114 7.3.4. Learning composite focal elements 115 7.3.5. Introducing disjunctions by mathematical morphology 115 7.4. Conjunctive combination 116 7.4.1. Dempster’s rule 116 7.4.2. Conflict and normalization 116 7.4.3. Properties 118 7.4.4. Discounting 120 7.4.5. Conditioning 120 7.4.6. Separable mass functions 121 7.4.7. Complexity 122 7.5. Other combination modes 122 7.6. Decision 122 7.7. Application example in medical imaging 124 7.8. Bibliography 131 Chapter 8. Fuzzy Sets and Possibility Theory 135 Isabelle BLOCH 8.1. Introduction and general concepts 135 8.2. Definitions of the fundamental concepts of fuzzy sets 136 8.2.1. Fuzzy sets 136 8.2.2. Set operations: Zadeh’s original definitions 137 8.2.3. α-cuts 139 8.2.4. Cardinality 139 8.2.5. Fuzzy number 140 8.3. Fuzzy measures 142 8.3.1. Fuzzy measure of a crisp set 142 8.3.2. Examples of fuzzy measures 142 8.3.3. Fuzzy integrals 143 8.3.4. Fuzzy set measures 145 8.3.5. Measures of fuzziness 145 8.4. Elements of possibility theory 147 8.4.1. Necessity and possibility 147 8.4.2. Possibility distribution 148 8.4.3. Semantics 150 8.4.4. Similarities with the probabilistic, statistical and belief interpretations 150 8.5. Combination operators 151 8.5.1. Fuzzy complementation 152 8.5.2. Triangular norms and conorms 153 8.5.3. Mean operators 161 8.5.4. Symmetric sums 165 8.5.5. Adaptive operators 167 8.6. Linguistic variables 170 8.6.1. Definition 171 8.6.2. An example of a linguistic variable 171 8.6.3. Modifiers 172 8.7. Fuzzy and possibilistic logic 172 8.7.1. Fuzzy logic 173 8.7.2. Possibilistic logic 177 8.8. Fuzzy modeling in fusion 179 8.9. Defining membership functions or possibility distributions 180 8.10. Combining and choosing the operators 182 8.11. Decision 187 8.12. Application examples 188 8.12.1. Example in satellite imagery 188 8.12.2. Example in medical imaging 192 8.13. Bibliography 194 Chapter 9. Spatial Information in Fusion Methods 199 Isabelle BLOCH 9.1. Modeling 199 9.2. The decision level 200 9.3. The combination level 201 9.4. Application examples 201 9.4.1. The combination level: multi-source Markovian classification 201 9.4.2. The modeling and decision level: fusion of structure detectors using belief function theory 202 9.4.3. The modeling level: fuzzy fusion of spatial relations 205 9.5. Bibliography 211 Chapter 10. Multi-Agent Methods: An Example of an Architecture and its Application for the Detection, Recognition and Identification of Targets 213 Fabienne EALET, Bertrand COLLIN and Catherine GARBAY 10.1.The DRI function 214 10.1.1. The application context 215 10.1.2. Design constraints and concepts 216 10.1.3. State of the art 216 10.2. Proposed method: towards a vision system 217 10.2.1. Representation space and situated agents 218 10.2.2. Focusing and adapting 219 10.2.3. Distribution and co-operation 220 10.2.4. Decision and uncertainty management 221 10.2.5. Incrementality and learning 221 10.3. The multi-agent system: platform and architecture 222 10.3.1. The developed multi-agent architecture 222 10.3.2. Presentation of the platformused 222 10.4. The control scheme 224 10.4.1. The intra-image control cycle 224 10.4.2. Inter-image control cycle 226 10.5. The information handled by the agents 227 10.5.1. The knowledge base 227 10.5.2. The world model 229 10.6. The results 231 10.6.1. Direct analysis 232 10.6.2. Indirect analysis: two focusing strategies 235 10.6.3. Indirect analysis: spatial and temporal exploration 237 10.6.4. Conclusion 240 10.7. Bibliography 241 Chapter 11. Fusion of Non-Simultaneous Elements of Information: Temporal Fusion 245 Michèle ROMBAUT 11.1. Time variable observations 245 11.2. Temporal constraints 246 11.3. Fusion 247 11.3.1. Fusion of distinct sources 247 11.3.2. Fusion of single source data 248 11.3.3. Temporal registration 249 11.4. Dating measurements 249 11.5. Evolutionary models 250 11.6. Single sensor prediction-combination 252 11.7. Multi-sensor prediction-combination 253 11.8. Conclusion 257 11.9. Bibliography 257 Chapter 12. Conclusion 259 Isabelle BLOCH 12.1. A few achievements 259 12.2. A few prospects 260 12.3. Bibliography 261 Appendices 263 A. Probabilities: A Historical Perspective 263 A.1. Probabilities through history 264 A.1.1. Before 1660 264 A.1.2. Towards the Bayesian mathematical formulation 266 A.1.3. The predominance of the frequentist approach: the “objectivists” 268 A.1.4. The 20th century: a return to subjectivism 269 A.2. Objectivist and subjectivist probability classes 271 A.3. Fundamental postulates for an inductive logic 272 A.3.1. Fundamental postulates 273 A.3.2. First functional equation 274 A.3.3. Second functional equation 275 A.3.4. Probabilities inferred from functional equations 276 A.3.5. Measure of uncertainty and information theory 276 A.3.6. De Finetti and betting theory 277 A.4.Bibliography 280 B. Axiomatic Inference of the Dempster-Shafer Combination Rule 283 B.1. Smets’s axioms 284 B.2. Inference of the combination rule 286 B.3.RelationwithCox’s postulates 287 B.4.Bibliography 289 List of Authors 291 Index 293

About the Author :
Isabelle Bloch is Professor at the Ecole Nationale Supérieure des Télécommunications, Paris, France.


Best Sellers


Product Details
  • ISBN-13: 9781118623992
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: Wiley-ISTE
  • Language: English
  • Sub Title: Major Probabilistic and Non-Probabilistic Numerical Approaches
  • ISBN-10: 1118623991
  • Publisher Date: 01 Mar 2013
  • Binding: Digital (delivered electronically)
  • No of Pages: 320


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Information Fusion in Signal and Image Processing: Major Probabilistic and Non-Probabilistic Numerical Approaches
John Wiley & Sons Inc -
Information Fusion in Signal and Image Processing: Major Probabilistic and Non-Probabilistic Numerical Approaches
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Information Fusion in Signal and Image Processing: Major Probabilistic and Non-Probabilistic Numerical Approaches

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!