Buy True Digital Control Book by Peter C. Young - Bookswagon
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Mechanical engineering and materials > Production and industrial engineering > Industrial quality control > True Digital Control: Statistical Modelling and Non-Minimal State Space Design
True Digital Control: Statistical Modelling and Non-Minimal State Space Design

True Digital Control: Statistical Modelling and Non-Minimal State Space Design


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

True Digital Control: Statistical Modelling and Non–Minimal State Space Designdevelops a true digital control design philosophy that encompasses data–based model identification, through to control algorithm design, robustness evaluation and implementation. With a heritage from both classical and modern control system synthesis, this book is supported by detailed practical examples based on the authors’ research into environmental, mechatronic and robotic systems. Treatment of both statistical modelling and control design under one cover is unusual and highlights the important connections between these disciplines. Starting from the ubiquitous proportional–integral controller, and with essential concepts such as pole assignment introduced using straightforward algebra and block diagrams, this book addresses the needs of those students, researchers and engineers, who would like to advance their knowledge of control theory and practice into the state space domain; and academics who are interested to learn more about non–minimal state variable feedback control systems. Such non–minimal state feedback is utilised as a unifying framework for generalised digital control system design. This approach provides a gentle learning curve, from which potentially difficult topics, such as optimal, stochastic and multivariable control, can be introduced and assimilated in an interesting and straightforward manner. Key features:  Covers both system identification and control system design in a unified manner Includes practical design case studies and simulation examples Considers recent research into time–variable and state–dependent parameter modelling and control, essential elements of adaptive and nonlinear control system design, and the delta–operator (the discrete–time equivalent of the differential operator) systems Accompanied by a website hosting MATLAB examples True Digital Control: Statistical Modelling and Non–Minimal State Space Design is a comprehensive and practical guide for students and professionals who wish to further their knowledge in the areas of modern control and system identification.

Table of Contents:
Preface xiii List of Acronyms xv 1 Introduction 1 1.1 Control Engineering and Control Theory 2 1.2 Classical and Modern Control 5 1.3 The Evolution of the NMSS Model Form 8 1.4 True Digital Control 11 1.5 Book Outline 12 1.6 Concluding Remarks 13 References 14 2 Discrete-Time Transfer Functions 17 2.1 Discrete-Time TF Models 18 2.2 Stability and the Unit Circle 24 2.3 Block Diagram Analysis 26 2.4 Discrete-Time Control 28 2.5 Continuous to Discrete-Time TF Model Conversion 36 2.6 Concluding Remarks 38 References 38 3 Minimal State Variable Feedback 41 3.1 Controllable Canonical Form 44 3.2 Observable Canonical Form 50 3.3 General State Space Form 53 3.4 Controllability and Observability 58 3.5 Concluding Remarks 61 References 62 4 Non-Minimal State Variable Feedback 63 4.1 The NMSS Form 64 4.2 Controllability of the NMSS Model 68 4.3 The Unity Gain NMSS Regulator 69 4.4 Constrained NMSS Control and Transformations 77 4.5 Worked Example with Model Mismatch 81 4.6 Concluding Remarks 85 References 86 5 True Digital Control for Univariate Systems 89 5.1 The NMSS Servomechanism Representation 93 5.2 Proportional-Integral-Plus Control 98 5.3 Pole Assignment for PIP Control 101 5.4 Optimal Design for PIP Control 110 5.5 Case Studies 116 5.6 Concluding Remarks 119 References 120 6 Control Structures and Interpretations 123 6.1 Feedback and Forward Path PIP Control Structures 123 6.2 Incremental Forms for Practical Implementation 131 6.3 The Smith Predictor and its Relationship with PIP Design 137 6.4 Stochastic Optimal PIP Design 142 6.5 Generalised NMSS Design 153 6.6 Model Predictive Control 157 6.7 Concluding Remarks 163 References 164 7 True Digital Control for Multivariable Systems 167 7.1 The Multivariable NMSS (Servomechanism) Representation 168 7.2 Multivariable PIP Control 175 7.3 Optimal Design for Multivariable PIP Control 177 7.4 Multi-Objective Optimisation for PIP Control 186 7.5 Proportional-Integral-Plus Decoupling Control by Algebraic Pole Assignment 192 7.6 Concluding Remarks 195 References 196 8 Data-Based Identification and Estimation of Transfer Function Models 199 8.1 Linear Least Squares, ARX and Finite Impulse Response Models 200 8.2 General TF Models 211 8.3 Optimal RIV Estimation 218 8.4 Model Structure Identification and Statistical Diagnosis 231 8.5 Multivariable Models 243 8.6 Continuous-Time Models 248 8.7 Identification and Estimation in the Closed-Loop 253 8.8 Concluding Remarks 260 References 261 9 Additional Topics 265 9.1 The δ-Operator Model and PIP Control 266 9.2 Time Variable Parameter Estimation 279 9.3 State-Dependent Parameter Modelling and PIP Control 290 9.4 Concluding Remarks 298 References 298 A Matrices and Matrix Algebra 301 References 310 B The Time Constant 311 Reference 311 C Proof of Theorem 4.1 313 References 314 D Derivative Action Form of the Controller 315 E Block Diagram Derivation of PIP Pole Placement Algorithm 317 F Proof of Theorem 6.1 321 Reference 322 G The CAPTAIN Toolbox 323 References 325 H The Theorem of D.A. Pierce (1972) 327 References 328 Index 329

About the Author :
James Taylor received his B.Sc. (Hons.) and Ph.D degrees from Lancaster University, UK, before joining the academic staff of the Engineering Department in 2000. His research focuses on control system design and system identification, with applied work spanning robotics, transport, energy, agriculture and the environment. This has led to over 100 publications in the open literature and widespread impact across a variety of academic and industry–based users. He has pioneered new advances in non–minimal state space design, and coordinates development of the well–known Captain Toolbox for Time Series Analysis and Forecasting. He is a Fellow of the Institution of Engineering and Technology, and supervises students across a spectrum of mechanical, electronic, nuclear and chemical engineering disciplines. Peter Young is Emeritus Professor at Lancaster University, UK, and Adjunct Professor at the Australian National University, Canberra. After an apprenticeship in the Aerospace Industry and B.Tech., MSc. degrees from Loughborough University, he obtained his Ph.D degree from Cambridge University in 1970 and became University Lecturer in Engineering and a Fellow of Clare Hall at Cambridge University. After seven years as Professorial Fellow at the Australian National University, he then moved to Lancaster University in 1981 as Professor and Head of the Environmental Science Department. He is well known for his work on optimal identification, data–based mechanistic modelling and adaptive forecasting, with applications in areas ranging from the environment, through ecology, biology and engineering to business and macro–economics. Until his recent retirement, Arun Chotai was Senior Lecturer in the Lancaster Environment Centre at Lancaster University, UK. He holds a Ph.D in Systems and Control and a B.Sc. (Hons.) in Mathematics, both from the University of Bath, UK. Following his appointment to an academic position at Lancaster in 1984, he taught and developed modules in environmental systems, courses that were then unique to the UK in providing an advanced, quantitative approach to the subject. For many years, he was also joint head (with present co–author Peter Young) of the Systems and Control Group, which he helped to build into a successful research unit that became known internationally for its research in the areas of system identification, time–series analysis and control system design.


Best Sellers


Product Details
  • ISBN-13: 9781118535509
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: John Wiley & Sons Inc
  • Language: English
  • Sub Title: Statistical Modelling and Non-Minimal State Space Design
  • ISBN-10: 1118535502
  • Publisher Date: 28 May 2013
  • Binding: Digital (delivered electronically)
  • No of Pages: 360


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
True Digital Control: Statistical Modelling and Non-Minimal State Space Design
John Wiley & Sons Inc -
True Digital Control: Statistical Modelling and Non-Minimal State Space Design
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

True Digital Control: Statistical Modelling and Non-Minimal State Space Design

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!