Molecular Electronic-Structure Theory
Home > Mathematics and Science Textbooks > Chemistry > Physical chemistry > Quantum and theoretical chemistry > Molecular Electronic-Structure Theory
Molecular Electronic-Structure Theory

Molecular Electronic-Structure Theory


     0     
5
4
3
2
1



International Edition


X
About the Book

Ab initio quantum chemistry has emerged as an important tool in chemical research and is appliced to a wide variety of problems in chemistry and molecular physics. Recent developments of computational methods have enabled previously intractable chemical problems to be solved using rigorous quantum-mechanical methods. This is the first comprehensive, up-to-date and technical work to cover all the important aspects of modern molecular electronic-structure theory. Topics covered in the book include: * Second quantization with spin adaptation * Gaussian basis sets and molecular-integral evaluation * Hartree-Fock theory * Configuration-interaction and multi-configurational self-consistent theory * Coupled-cluster theory for ground and excited states * Perturbation theory for single- and multi-configurational states * Linear-scaling techniques and the fast multipole method * Explicity correlated wave functions * Basis-set convergence and extrapolation * Calibration and benchmarking of computational methods, with applications to moelcular equilibrium structure, atomization energies and reaction enthalpies. Molecular Electronic-Structure Theory makes extensive use of numerical examples, designed to illustrate the strengths and weaknesses of each method treated. In addition, statements about the usefulness and deficiencies of the various methods are supported by actual examples, not just model calculations. Problems and exercises are provided at the end of each chapter, complete with hints and solutions. This book is a must for researchers in the field of quantum chemistry as well as for nonspecialists who wish to acquire a thorough understanding of ab initio molecular electronic-structure theory and its applications to problems in chemistry and physics. It is also highly recommended for the teaching of graduates and advanced undergraduates.

Table of Contents:
Preface xxi Overview xxv Programs used in the preparation of this book xxix 1. Second Quantization 1 1.1 The Fock space 1 1.2 Creation and annihilation operators 2 1.3 Number-conserving operators 6 1.4 The representation of one- and two-electron operators 9 1.5 Products of operators in second quantization 14 1.6 First- and second-quantization operators compared 18 1.7 Density matrices 19 1.8 Commutators and anticommutators 25 1.9 Nonorthogonal spin orbitals 27 2. Spin in Second Quantization 34 2.1 Spin functions 34 2.2 Operators in the orbital basis 35 2.3 Spin tensor operators 41 2.4 Spin properties of determinants 46 2.5 Configuration state functions 51 2.6 The genealogical coupling scheme 53 2.7 Density matrices 61 3. Orbital Rotations 80 3.1 Unitary transformations and matrix exponentials 80 3.2 Unitary spin-orbital transformations 86 3.3 Symmetry-restricted unitary transformations 89 3.4 The logarithmic matrix function 93 4. Exact and Approximate Wave Functions 107 4.1 Characteristics of the exact wave function 107 4.2 The variation principle 111 4.3 Size-extensivity 126 4.4 Symmetry constraints 135 5. The Standard Models 142 5.1 One- and N-electron expansions 143 5.2 A model system: the hydrogen molecule in a minimal basis 146 5.3 Exact wave functions in Fock space 162 5.4 The Hartree-Fock approximation 167 5.5 Multiconfigurational self-consistent field theory 176 5.6 Configuration-interaction theory 181 5.7 Coupled-cluster theory 186 5.8 Perturbation theory 192 6. Atomic Basis Functions 201 6.1 Requirements on one-electron basis functions 201 6.2 One- and many-centre expansions 203 6.3 The one-electron central-field system 204 6.4 The angular basis 207 6.5 Exponential radial functions 218 6.6 Gaussian radial functions 229 7. Short-Range Interactions and Orbital Expansions 256 7.1 The Coulomb hole 256 7.2 The Coulomb cusp 259 7.3 Approximate treatments of the ground-state helium atom 262 7.4 The partial-wave expansion of the ground-state helium atom 267 7.5 The principal expansion of the ground-state helium atom 273 7.6 Electron-correlation effects summarized 278 8. Gaussian Basis Sets 287 8.1 Gaussian basis functions 287 8.2 Gaussian basis sets for Hartree-Fock calculations 288 8.3 Gaussian basis sets for correlated calculations 300 8.4 Basis-set convergence 315 8.5 Basis-set superposition error 327 9. Molecular Integral Evaluation 336 9.1 Contracted spherical-harmonic Gaussians 336 9.2 Cartesian Gaussians 338 9.3 The Obara-Saika scheme for simple integrals 344 9.4 Hermite Gaussians 349 9.5 The McMurchie-Davidson scheme for simple integrals 352 9.6 Gaussian quadrature for simple integrals 357 9.7 Coulomb integra;s over spherical Gaussians 361 9.8 The Boys function 365 9.9 The McMurchie-Davidson scheme for Coulomb integrals 372 9.10 The Obara-Saika scheme for Coulomb integrals 381 9.11 Rys quadrature for Coulomb integrals 387 9.12 Scaling properties of the molecular integrals 398 9.13 The multipole method for Coulomb integrals 405 9.14 The multipole method for large systems 417 10. Hartree-Fock Theory 433 10.1 Parametrization of the wave function and the energy 433 10.2 The Hartree-Fock wave function 438 10.3 Canonical Hartree-Fock theory 443 10.4 The RHF total energy and orbital energies 450 10.5 Koopmans’ theorem 454 10.6 The Roothaan-Hall self-consistent field equations 458 10.7 Density-based Hartree-Fock theory 465 10.8 Second-order optimization 478 10.9 The SCF method as an approximate second-order method 490 10.10 Singlet and triplet instabilities in RHF theory 496 10.11 Multiple solutions in Hartree-Fock theory 504 11. Configuration-Interaction Theory 523 11.1 The CI model 523 11.2 Size-extensivity and the CI model 527 11.3 A CI model system for noninteracting hydrogen molecules 535 11.4 Parametrization of the CI model 540 11.5 Optimization of the CI wave function 543 11.6 Slater determinants as products of alpha and beta strings 550 11.7 The determinantal representation of the Hamiltonian operator 552 11.8 Direct CI methods 554 11.9 CI orbital transformations 569 11.10 Symmetry-broken CI solutions 573 12. Multiconfigurational Self-Consistent Field Theory 498 12.1 The MCSCF model 498 12.2 The MCSCF energy and wave function  600 12.3 The MCSCF Newton trust-region method 610 12.4 The Newton cigenvector method 616  12.5 Computational considerations 621 12.6 Exponential parametrization of the configuration space 630 12.7 MCSCF theory for several electronic states 637 12.8 Removal of RHF instabilities in MCSCF theory 640 13. Coupled-Cluster Theory 648 13.1 The coupled-cluster model 648 13.2 The coupled-cluster exponential ansatz 654 13.3 Size-extensivity in coupled-cluster theory 665 13.4 Coupled-cluster optimization techniques 670 13.5 The coupled-cluster variational Lagrangian 674 13.6 The equation-of-motion coupled-cluster method 677 13.7 The closed-shell CCSD model 685 13.8 Special treatments of coupled-cluster theory 698 13.9 High-spin open-shell coupled-cluster theory 704 14. Perturbation Theory 724 14.1 Rayleigh-Schrödinger perturbation theory 725 14.2 Møller-Plesset perturbation theory 739 14.3 Coupled-cluster perturbation theory 749 14.4 Møller-Plesset theory for closed-shell systems 759 14.5 Convergence in perturbation theory 769 14.6 Perturbative treatments of coupled-cluster wave functions 783 14.7 Multiconfigurational perturbation theory 796 15. Calibration of the Electronic-Structure Models 817 15.1 The sample molecules 817 15.2 Errors in quantum-chemical calculations 819 15.3 Molecular equilibrium structures: bond distances 821 15.4 Molecular equilibrium structures; bond angles 832 15.5 Molecular dipole moments 836 15.6 Molecular and atomic energies 840 15.7 Atomization energies 854 15.8 Reaction enthalpies 865 15.9 Conformational barriers 874 15.10 Conclusions 879 List of Acronyms 885 Index 887

About the Author :
Trygve Helgaker, Department of Chemistry, University of Oslo, Norway. Poul Jorgensen and Jeppe Olsen Department of Chemistry, University of Aarhus, Denmark.


Best Sellers


Product Details
  • ISBN-13: 9781118531471
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: John Wiley & Sons Inc
  • Height: 247 mm
  • No of Pages: 944
  • Returnable: N
  • Weight: 1701 gr
  • ISBN-10: 1118531477
  • Publisher Date: 15 Feb 2013
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Spine Width: 48 mm
  • Width: 191 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Molecular Electronic-Structure Theory
John Wiley & Sons Inc -
Molecular Electronic-Structure Theory
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Molecular Electronic-Structure Theory

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!