Control of Cutting Vibration and Machining Instability
Home > Science, Technology & Agriculture > Technology: general issues > Engineering graphics and draughting > Control of Cutting Vibration and Machining Instability: A Time-Frequency Approach for Precision, Micro and Nano Machining
Control of Cutting Vibration and Machining Instability: A Time-Frequency Approach for Precision, Micro and Nano Machining

Control of Cutting Vibration and Machining Instability: A Time-Frequency Approach for Precision, Micro and Nano Machining


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Table of Contents:
Preface ix 1 Cutting Dynamics and Machining Instability 1 1.1 Instability in Turning Operation 2 1.1.1 Impact of Coupled Whirling and Tool Geometry on Machining 3 1.2 Cutting Stability 10 1.3 Margin of Stability and Instability 12 1.4 Stability in Fine Cuts 23 1.5 Concluding Remarks 31 References 32 2 Basic Physical Principles 33 2.1 Euclidean Vectors 33 2.2 Linear Spaces 34 2.3 Matrices 36 2.3.1 Eigenvalue and Linear Transformation 37 2.4 Discrete Functions 38 2.4.1 Convolution and Filter Operation 39 2.4.2 Sampling Theorem 40 2.4.3 z-Transform 41 2.5 Tools for Characterizing Dynamic Response 42 2.5.1 Fourier Analysis 49 2.5.2 Wavelet Analysis 51 References 54 3 Adaptive Filters and Filtered-x LMS Algorithm 55 3.1 Discrete-Time FIR Wiener Filter 55 3.1.1 Performance Measure 56 3.1.2 Optimization of Performance Function 58 3.2 Gradient Descent Optimization 60 3.3 Least-Mean-Square Algorithm 62 3.4 Filtered-x LMS Algorithm 64 References 68 4 Time-Frequency Analysis 71 4.1 Time and Frequency Correspondence 72 4.2 Time and Frequency Resolution 75 4.3 Uncertainty Principle 76 4.4 Short-Time Fourier Transform 77 4.5 Continuous-Time Wavelet Transform 79 4.6 Instantaneous Frequency 81 4.6.1 Fundamental Notions 82 4.6.2 Misinterpretation of Instantaneous Frequency 85 4.6.3 Decomposition of Multi-Mode Structure 90 4.6.4 Example of Instantaneous Frequency 94 4.6.5 Characteristics of Nonlinear Response 97 References 100 5 Wavelet Filter Banks 101 5.1 A Wavelet Example 101 5.2 Multiresolution Analysis 104 5.3 Discrete Wavelet Transform and Filter Banks 112 References 116 6 Temporal and Spectral Characteristics of Dynamic Instability 117 6.1 Implication of Linearization in Time-Frequency Domains 118 6.2 Route-to-Chaos in Time-Frequency Domain 125 6.3 Summary 134 References 134 7 Simultaneous Time-Frequency Control of Dynamic Instability 137 7.1 Property of Route-to-Chaos 137 7.1.1 OGY Control of Stationary and Nonstationary H´enon Map 139 7.1.2 Lyapunov-based Control of Stationary and Nonstationary Duffing Oscillator 140 7.2 Property of Chaos Control 144 7.2.1 Simultaneous Time-Frequency Control 145 7.3 Validation of Chaos Control 155 References 162 8 Time-Frequency Control ofMilling Instability and Chatter at High Speed 165 8.1 Milling Control Issues 165 8.2 High-Speed Low Immersion Milling Model 167 8.3 Route-to-Chaos and Milling Instability 168 8.4 Milling Instability Control 170 8.5 Summary 175 References 176 9 Multidimensional Time-Frequency Control of Micro-Milling Instability 177 9.1 Micro-Milling Control Issues 177 9.2 Nonlinear Micro-Milling Model 179 9.3 Multivariable Micro-Milling Instability Control 181 9.3.1 Control Strategy 183 9.4 Micro-Milling Instability Control 186 9.5 Summary 193 References 197 10 Time-Frequency Control of Friction Induced Instability 199 10.1 Issues with Friction-Induced Vibration Control 199 10.2 Continuous Rotating Disk Model 201 10.3 Dynamics of Friction-Induced Vibration 206 10.4 Friction-Induced Instability Control 208 10.5 Summary 214 References 215 11 Synchronization of Chaos in Simultaneous Time-Frequency Domain 217 11.1 Synchronization of Chaos 217 11.2 Dynamics of a Nonautonomous Chaotic System 219 11.3 Synchronization Scheme 222 11.4 Chaos Control 223 11.4.1 Scenario I 223 11.4.2 Scenario II 227 11.5 Summary 227 References 229 Appendix: MATLAB® Programming Examples of Nonlinear Time-Frequency Control 231 A.1 Friction-Induced Instability Control 231 A.1.1 Main Program 232 A.1.2 Simulink® Model 236 A.2 Synchronization of Chaos 239 A.2.1 Main Program 239 A.2.2 Simulink® Model 244 Index 245

About the Author :
Dr C. Steve Suh, Director, Institute for Innovation and Design in Engineering, Department of Mechanical Engineering, Texas A&M University, USA. Dr Suh obtained his PhD in Mechanical Engineering from Texas A&M University in 1997. He has co-authored numerous journals articles and a book, and was Guest Editor of the Journal of Vibration and Control in 2007. Dr Suh’s research interests include Nonlinear control theory; Laser ultrasonic thermometry; Characterization and control of dynamic manufacturing instability; Engineering design theory; MEMS and NEMS fabrication; High-performance 3D microelectronic packaging; Dynamic system diagnostics and prognostics; Wave propagation; Thermo-Elasto-Viscoplastodynamics. Dr Meng-Kun Liu, Lecturer, Department of Mechanical Engineering, Texas A&M University, USA. Dr.Liu obtained his PhD in Mechanical Engineering from Texas A&M University in 2012. He has two-years senior design instructor experience in system engineering, project management and design optimization, and four years hands-on experience in industrial projects with focuses on design innovation. He was the recipient of the 2012 Departmental Graduate Student Teaching Award, and has co-authored numerous journal articles and conference proceedings. This is his first book.


Best Sellers


Product Details
  • ISBN-13: 9781118402764
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: John Wiley & Sons Inc
  • Language: English
  • Sub Title: A Time-Frequency Approach for Precision, Micro and Nano Machining
  • ISBN-10: 1118402766
  • Publisher Date: 01 Aug 2013
  • Binding: Digital (delivered electronically)
  • No of Pages: 264


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Control of Cutting Vibration and Machining Instability: A Time-Frequency Approach for Precision, Micro and Nano Machining
John Wiley & Sons Inc -
Control of Cutting Vibration and Machining Instability: A Time-Frequency Approach for Precision, Micro and Nano Machining
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Control of Cutting Vibration and Machining Instability: A Time-Frequency Approach for Precision, Micro and Nano Machining

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!