Probabilistic Reliability Models
Home > Science, Technology & Agriculture > Mechanical engineering and materials > Production and industrial engineering > Reliability engineering > Probabilistic Reliability Models
Probabilistic Reliability Models

Probabilistic Reliability Models

|
     0     
5
4
3
2
1




Out of Stock


Notify me when this book is in stock
About the Book

Practical Approaches to Reliability Theory in Cutting-Edge Applications Probabilistic Reliability Models helps readers understand and properly use statistical methods and optimal resource allocation to solve engineering problems. The author supplies engineers with a deeper understanding of mathematical models while also equipping mathematically oriented readers with a fundamental knowledge of the engineeringrelated applications at the center of model building. The book showcases the use of probability theory and mathematical statistics to solve common, real-world reliability problems. Following an introduction to the topic, subsequent chapters explore key systems and models including: * Unrecoverable objects and recoverable systems * Methods of direct enumeration * Markov models and heuristic models * Performance effectiveness * Time redundancy * System survivability * Aging units and their related systems * Multistate systems Detailed case studies illustrate the relevance of the discussed methods to real-world technical projects including software failure avalanches, gas pipelines with underground storage, and intercontinental ballistic missile (ICBM) control systems. Numerical examples and detailed explanations accompany each topic, and exercises throughout allow readers to test their comprehension of the presented material. Probabilistic Reliability Models is an excellent book for statistics, engineering, and operations research courses on applied probability at the upper-undergraduate and graduate levels. The book is also a valuable reference for professionals and researchers working in industry who would like a mathematical review of reliability models and the relevant applications.

Table of Contents:
Preface xiii Acronyms and Notations xv 1 What Is Reliability? 1 1.1 Reliability as a Property of Technical Objects, 1 1.2 Other "Ilities", 2 1.3 Hierarchical Levels of Analyzed Objects, 5 1.4 How Can Reliability Be Measured?, 5 1.5 Software Reliability, 7 1.5.1 Case Study: Avalanche of Software Failures, 8 2 Unrecoverable Objects 9 2.1 Unit, 9 2.1.1 Probability of Failure-Free Operation, 9 2.1.2 Mean Time to Failure, 10 2.2 Series Systems, 11 2.2.1 Probability of Failure-Free Operation, 11 2.2.2 Mean Time to Failure, 13 2.3 Parallel System, 14 2.3.1 Probability of Failure-Free Operation, 14 2.3.2 Mean Time to Failure, 18 2.4 Structure of Type "k-out-of-n", 20 2.5 Realistic Models of Loaded Redundancy, 22 2.5.1 Unreliable Switching Process, 23 2.5.2 Non-Instant Switching, 23 2.5.3 Unreliable Switch, 24 2.5.4 Switch Serving as Interface, 25 2.5.5 Incomplete Monitoring of the Operating Unit, 26 2.5.6 Periodical Monitoring of the Operating Unit, 28 2.6 Reducible Structures, 28 2.6.1 Parallel-Series and Series-Parallel Structures, 28 2.6.2 General Case of Reducible Structures, 29 2.7 Standby Redundancy, 30 2.7.1 Simple Redundant Group, 30 2.7.2 Standby Redundancy of Type "k-out-of-n", 33 2.8 Realistic Models of Unloaded Redundancy, 34 2.8.1 Unreliable Switching Process, 34 2.8.2 Non-Instant Switching, 35 2.8.3 Unreliable Switch, 35 2.8.4 Switch Serving as Interface, 37 2.8.5 Incomplete Monitoring of the Operating Unit, 38 3 Recoverable Systems: Markov Models 40 3.1 Unit, 40 3.1.1 Markov Model, 41 3.2 Series System, 47 3.2.1 Turning Off System During Recovery, 47 3.2.2 System in Operating State During Recovery: Unrestricted Repair, 49 3.2.3 System in Operating State During Recovery: Restricted Repair, 51 3.3 Dubbed System, 53 3.3.1 General Description, 53 3.3.2 Nonstationary Availability Coefficient, 54 3.3.3 Stationary Availability Coefficient, 58 3.3.4 Probability of Failure-Free Operation, 59 3.3.5 Stationary Coefficient of Interval Availability, 62 3.3.6 Mean Time to Failure, 63 3.3.7 Mean Time Between Failures, 63 3.3.8 Mean Recovery Time, 65 3.4 Parallel Systems, 65 3.5 Structures of Type "m-out-of-n", 66 4 Recoverable Systems: Heuristic Models 72 4.1 Preliminary Notes, 72 4.2 Poisson Process, 75 4.3 Procedures over Poisson Processes, 78 4.3.1 Thinning Procedure, 78 4.3.2 Superposition Procedure, 80 4.4 Asymptotic Thinning Procedure over Stochastic Point Process, 80 4.5 Asymptotic Superposition of Stochastic Point Processes, 82 4.6 Intersection of Flows of Narrow Impulses, 84 4.7 Heuristic Method for Reliability Analysis of Series Recoverable Systems, 87 4.8 Heuristic Method for Reliability Analysis of Parallel Recoverable Systems, 87 4.8.1 Influence of Unreliable Switching Procedure, 88 4.8.2 Influence of Switch's Unreliability, 89 4.8.3 Periodical Monitoring of the Operating Unit, 90 4.8.4 Partial Monitoring of the Operating Unit, 91 4.9 Brief Historical Overview and Related Sources, 93 5 Time Redundancy 95 5.1 System with Possibility of Restarting Operation, 95 5.2 Systems with "Admissibly Short Failures", 98 5.3 Systems with Time Accumulation, 99 5.4 Case Study: Gas Pipeline with an Underground Storage, 100 5.5 Brief Historical Overview and Related Sources, 102 6 "Aging" Units and Systems of "Aging" Units 103 6.1 Chebyshev Bound, 103 6.2 "Aging" Unit, 104 6.3 Bounds for Probability of Failure-Free Operations, 105 6.4 Series System Consisting of "Aging" Units, 108 6.4.1 Preliminary Lemma, 108 6.5 Series System, 110 6.5.1 Probability of Failure-Free Operation, 110 6.5.2 Mean Time to Failure of a Series System, 112 6.6 Parallel System, 114 6.6.1 Probability of Failure-Free Operation, 114 6.6.2 Mean Time to Failure, 117 6.7 Bounds for the Coefficient of Operational Availability, 119 6.8 Brief Historical Overview and Related Sources, 121 7 Two-Pole Networks 123 7.1 General Comments, 123 7.1.1 Method of Direct Enumeration, 125 7.2 Method of Boolean Function Decomposition, 127 7.3 Method of Paths and Cuts, 130 7.3.1 Esary--Proschan Bounds, 130 7.3.2 "Improvements" of Esary--Proschan Bounds, 133 7.3.3 Litvak--Ushakov Bounds, 135 7.3.4 Comparison of the Two Methods, 139 7.4 Brief Historical Overview and Related Sources, 140 8 Performance Effectiveness 143 8.1 Effectiveness Concepts, 143 8.2 General Idea of Effectiveness Evaluation, 145 8.2.1 Conditional Case Study: Airport Traffic Control System, 147 8.3 Additive Type of System Units' Outcomes, 150 8.4 Case Study: ICBM Control System, 151 8.5 Systems with Intersecting Zones of Action, 153 8.6 Practical Recommendation, 158 8.7 Brief Historical Overview and Related Sources, 160 9 System Survivability 162 9.1 Illustrative Example, 166 9.2 Brief Historical Overview and Related Sources, 167 10 Multistate Systems 169 10.1 Preliminary Notes, 169 10.2 Generating Function, 169 10.3 Universal Generating Function, 172 10.4 Multistate Series System, 174 10.4.1 Series Connection of Piping Runs, 174 10.4.2 Series Connection of Resistors, 177 10.4.3 Series Connections of Capacitors, 179 10.5 Multistate Parallel System, 181 10.5.1 Parallel Connection of Piping Runs, 181 10.5.2 Parallel Connection of Resistors, 182 10.5.3 Parallel Connections of Capacitors, 182 10.6 Reducible Systems, 183 10.7 Conclusion, 190 10.8 Brief Historical Overview and Related Sources, 190 Appendix A Main Distributions Related to Reliability Theory 195 A.1 Discrete Distributions, 195 A.1.1 Degenerate Distribution, 195 A.1.2 Bernoulli Distribution, 196 A.1.3 Binomial Distribution, 197 A.1.4 Poisson Distribution, 198 A.1.5 Geometric Distribution, 200 A.2 Continuous Distributions, 201 A.2.1 Intensity Function, 201 A.2.2 Continuous Uniform Distribution, 202 A.2.3 Exponential Distribution, 203 A.2.4 Erlang Distribution, 204 A.2.5 Hyperexponential Distribution, 205 A.2.6 Normal Distribution, 207 A.2.7Weibull--Gnedenko Distribution, 207 Appendix B Laplace Transformation 209 Appendix C Markov Processes 214 C.1 General Markov Process, 214 C.1.1 Nonstationary Availability Coefficient, 216 C.1.2 Probability of Failure-Free Operation, 218 C.1.3 Stationary Availability Coefficient, 220 C.1.4 Mean Time to Failure and Mean Time Between Failures, 221 C.1.5 Mean Recovery Time, 222 C.2 Birth--Death Process, 223 Appendix D General Bibliography 227 Index 231


Best Sellers


Product Details
  • ISBN-13: 9781118370742
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: John Wiley & Sons Inc
  • Height: 274 mm
  • No of Pages: 248
  • Weight: 1461 gr
  • ISBN-10: 1118370740
  • Publisher Date: 07 Aug 2012
  • Binding: Other digital
  • Language: English
  • Spine Width: 33 mm
  • Width: 215 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Probabilistic Reliability Models
John Wiley & Sons Inc -
Probabilistic Reliability Models
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Probabilistic Reliability Models

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!