Evolutionary Algorithms for Mobile Ad Hoc Networks
Home > Science, Technology & Agriculture > Electronics and communications engineering > Communications engineering / telecommunications > WAP (wireless) technology > Evolutionary Algorithms for Mobile Ad Hoc Networks: (Nature-Inspired Computing Series)
Evolutionary Algorithms for Mobile Ad Hoc Networks: (Nature-Inspired Computing Series)

Evolutionary Algorithms for Mobile Ad Hoc Networks: (Nature-Inspired Computing Series)


     0     
5
4
3
2
1



Available


X
About the Book

Describes how evolutionary algorithms (EAs) can be used to identify, model, and minimize day-to-day problems that arise for researchers in optimization and mobile networking Mobile ad hoc networks (MANETs), vehicular networks (VANETs), sensor networks (SNs), and hybrid networks—each of these require a designer’s keen sense and knowledge of evolutionary algorithms in order to help with the common issues that plague professionals involved in optimization and mobile networking. This book introduces readers to both mobile ad hoc networks and evolutionary algorithms, presenting basic concepts as well as detailed descriptions of each. It demonstrates how metaheuristics and evolutionary algorithms (EAs) can be used to help provide low-cost operations in the optimization process—allowing designers to put some “intelligence” or sophistication into the design. It also offers efficient and accurate information on dissemination algorithms, topology management, and mobility models to address challenges in the field. Evolutionary Algorithms for Mobile Ad Hoc Networks: Instructs on how to identify, model, and optimize solutions to problems that arise in daily research Presents complete and up-to-date surveys on topics like network and mobility simulators Provides sample problems along with solutions/descriptions used to solve each, with performance comparisons Covers current, relevant issues in mobile networks, like energy use, broadcasting performance, device mobility, and more Evolutionary Algorithms for Mobile Ad Hoc Networks is an ideal book for researchers and students involved in mobile networks, optimization, advanced search techniques, and multi-objective optimization.

Table of Contents:
Preface xiii PART I BASIC CONCEPTS AND LITERATURE REVIEW 1 1 INTRODUCTION TO MOBILE AD HOC NETWORKS 3 1.1 Mobile Ad Hoc Networks 6 1.2 Vehicular Ad Hoc Networks 9 1.2.1 Wireless Access in Vehicular Environment (WAVE) 11 1.2.2 Communication Access for Land Mobiles (CALM) 12 1.2.3 C2C Network 13 1.3 Sensor Networks 14 1.3.1 IEEE 1451 17 1.3.2 IEEE 802.15.4 17 1.3.3 ZigBee 18 1.3.4 6LoWPAN 19 1.3.5 Bluetooth 19 1.3.6 Wireless Industrial Automation System 20 1.4 Conclusion 20 References 21 2 INTRODUCTION TO EVOLUTIONARY ALGORITHMS 27 2.1 Optimization Basics 28 2.2 Evolutionary Algorithms 29 2.3 Basic Components of Evolutionary Algorithms 32 2.3.1 Representation 32 2.3.2 Fitness Function 32 2.3.3 Selection 32 2.3.4 Crossover 33 2.3.5 Mutation 34 2.3.6 Replacement 35 2.3.7 Elitism 35 2.3.8 Stopping Criteria 35 2.4 Panmictic Evolutionary Algorithms 36 2.4.1 Generational EA 36 2.4.2 Steady-State EA 36 2.5 Evolutionary Algorithms with Structured Populations 36 2.5.1 Cellular EAs 37 2.5.2 Cooperative Coevolutionary EAs 38 2.6 Multi-Objective Evolutionary Algorithms 39 2.6.1 Basic Concepts in Multi-Objective Optimization 40 2.6.2 Hierarchical Multi-Objective Problem Optimization 42 2.6.3 Simultaneous Multi-Objective Problem Optimization 43 2.7 Conclusion 44 References 45 3 SURVEY ON OPTIMIZATION PROBLEMS FOR MOBILE AD HOC NETWORKS 49 3.1 Taxonomy of the Optimization Process 51 3.1.1 Online and Offline Techniques 51 3.1.2 Using Global or Local Knowledge 52 3.1.3 Centralized and Decentralized Systems 52 3.2 State of the Art 53 3.2.1 Topology Management 53 3.2.2 Broadcasting Algorithms 58 3.2.3 Routing Protocols 59 3.2.4 Clustering Approaches 63 3.2.5 Protocol Optimization 64 3.2.6 Modeling the Mobility of Nodes 65 3.2.7 Selfish Behaviors 66 3.2.8 Security Issues 67 3.2.9 Other Applications 67 3.3 Conclusion 68 References 69 4 MOBILE NETWORKS SIMULATION 79 4.1 Signal Propagation Modeling 80 4.1.1 Physical Phenomena 81 4.1.2 Signal Propagation Models 85 4.2 State of the Art of Network Simulators 89 4.2.1 Simulators 89 4.2.2 Analysis 92 4.3 Mobility Simulation 93 4.3.1 Mobility Models 93 4.3.2 State of the Art of Mobility Simulators 96 4.4 Conclusion 98 References 98 PART II PROBLEMS OPTIMIZATION 105 5 PROPOSED OPTIMIZATION FRAMEWORK 107 5.1 Architecture 108 5.2 Optimization Algorithms 110 5.2.1 Single-Objective Algorithms 110 5.2.2 Multi-Objective Algorithms 115 5.3 Simulators 121 5.3.1 Network Simulator: ns-3 121 5.3.2 Mobility Simulator: SUMO 123 5.3.3 Graph-Based Simulations 126 5.4 Experimental Setup 127 5.5 Conclusion 131 References 131 6 BROADCASTING PROTOCOL 135 6.1 The Problem 136 6.1.1 DFCN Protocol 136 6.1.2 Optimization Problem Definition 138 6.2 Experiments 140 6.2.1 Algorithm Configurations 140 6.2.2 Comparison of the Performance of the Algorithms 141 6.3 Analysis of Results 142 6.3.1 Building a Representative Subset of Best Solutions 143 6.3.2 Interpretation of the Results 145 6.3.3 Selected Improved DFCN Configurations 148 6.4 Conclusion 150 References 151 7 ENERGY MANAGEMENT 153 7.1 The Problem 154 7.1.1 AEDB Protocol 154 7.1.2 Optimization Problem Definition 156 7.2 Experiments 159 7.2.1 Algorithm Configurations 159 7.2.2 Comparison of the Performance of the Algorithms 160 7.3 Analysis of Results 161 7.4 Selecting Solutions from the Pareto Front 164 7.4.1 Performance of the Selected Solutions 167 7.5 Conclusion 170 References 171 8 NETWORK TOPOLOGY 173 8.1 The Problem 175 8.1.1 Injection Networks 175 8.1.2 Optimization Problem Definition 176 8.2 Heuristics 178 8.2.1 Centralized 178 8.2.2 Distributed 179 8.3 Experiments 180 8.3.1 Algorithm Configurations 180 8.3.2 Comparison of the Performance of the Algorithms 180 8.4 Analysis of Results 183 8.4.1 Analysis of the Objective Values 183 8.4.2 Comparison with Heuristics 185 8.5 Conclusion 187 References 188 9 REALISTIC VEHICULAR MOBILITY 191 9.1 The Problem 192 9.1.1 Vehicular Mobility Model 192 9.1.2 Optimization Problem Definition 196 9.2 Experiments 199 9.2.1 Algorithms Configuration 199 9.2.2 Comparison of the Performance of the Algorithms 200 9.3 Analysis of Results 202 9.3.1 Analysis of the Decision Variables 202 9.3.2 Analysis of the Objective Values 204 9.4 Conclusion 206 References 206 10 SUMMARY AND DISCUSSION 209 10.1 A New Methodology for Optimization in Mobile Ad Hoc Networks 211 10.2 Performance of the Three Algorithmic Proposals 213 10.2.1 Broadcasting Protocol 213 10.2.2 Energy-Efficient Communications 214 10.2.3 Network Connectivity 214 10.2.4 Vehicular Mobility 215 10.3 Global Discussion on the Performance of the Algorithms 215 10.3.1 Single-Objective Case 216 10.3.2 Multi-Objective Case 217 10.4 Conclusion 218 References 218 INDEX 221

About the Author :
BERNABÉ DORRONSORO, PHD, earned his PhD in computer science from the University of Málaga (Spain) in 2007. His main research interests include metaheuristics and mobile networks, among others. PATRICIA RUIZ, PHD, earned her PhD in computer science at the University of Luxembourg and her degree in telecommunication engineering from the University of Málaga (Spain). GRÉGOIRE DANOY, PHD, earned his PhD from University of St Etienne (Ecole des Mines) on the optimization of real-world problems using co-evolutionary genetic algorithms, including topology management problems in mobile ad hoc networks. YOANN PIGNÉ, PHD, obtained his PhD from the University of Le Havre, France, on Modelling and Processing Dynamic Graphs, Applications to Mobile Ad Hoc Networks. PASCAL BOUVRY, PHD, earned his PhD in computer science from the University of Grenoble (INPG), France, in 1994.


Best Sellers


Product Details
  • ISBN-13: 9781118341131
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: John Wiley & Sons Inc
  • Height: 241 mm
  • No of Pages: 240
  • Returnable: N
  • Spine Width: 20 mm
  • Width: 160 mm
  • ISBN-10: 1118341139
  • Publisher Date: 23 Dec 2014
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Series Title: Nature-Inspired Computing Series
  • Weight: 458 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Evolutionary Algorithms for Mobile Ad Hoc Networks: (Nature-Inspired Computing Series)
John Wiley & Sons Inc -
Evolutionary Algorithms for Mobile Ad Hoc Networks: (Nature-Inspired Computing Series)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Evolutionary Algorithms for Mobile Ad Hoc Networks: (Nature-Inspired Computing Series)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!