Bayesian Filtering and Smoothing
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Mathematics > Applied mathematics > Stochastics > Bayesian Filtering and Smoothing: (Series Number 17 Institute of Mathematical Statistics Textbooks)
Bayesian Filtering and Smoothing: (Series Number 17 Institute of Mathematical Statistics Textbooks)

Bayesian Filtering and Smoothing: (Series Number 17 Institute of Mathematical Statistics Textbooks)


     0     
5
4
3
2
1



International Edition


X
About the Book

Now in its second edition, this accessible text presents a unified Bayesian treatment of state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models. The book focuses on discrete-time state space models and carefully introduces fundamental aspects related to optimal filtering and smoothing. In particular, it covers a range of efficient non-linear Gaussian filtering and smoothing algorithms, as well as Monte Carlo-based algorithms. This updated edition features new chapters on constructing state space models of practical systems, the discretization of continuous-time state space models, Gaussian filtering by enabling approximations, posterior linearization filtering, and the corresponding smoothers. Coverage of key topics is expanded, including extended Kalman filtering and smoothing, and parameter estimation. The book's practical, algorithmic approach assumes only modest mathematical prerequisites, suitable for graduate and advanced undergraduate students. Many examples are included, with Matlab and Python code available online, enabling readers to implement algorithms in their own projects.

Table of Contents:
Symbols and abbreviations; 1. What are Bayesian filtering and smoothing?; 2. Bayesian inference; 3. Batch and recursive Bayesian estimation; 4. Discretization of continuous-time dynamic models; 5. Modeling with state space models; 6. Bayesian filtering equations and exact solutions; 7. Extended Kalman filtering; 8. General Gaussian filtering; 9. Gaussian filtering by enabling approximations; 10. Posterior linearization filtering; 11. Particle filtering; 12. Bayesian smoothing equations and exact solutions; 13. Extended Rauch-Tung-Striebel smoothing; 14. General Gaussian smoothing; 15. Particle smoothing; 16. Parameter estimation; 17. Epilogue; Appendix. Additional material; References; Index.

About the Author :
Simo Särkkä is Associate Professor in the Department of Electrical Engineering and Automation at Aalto University, Finland. His research interests center on state estimation and stochastic modeling, and he has authored two books (2013 and 2019) on these topics. He is Fellow of ELLIS, Senior Member of IEEE, a recipient of multiple paper awards, and he has been Chair of MLSP and FUSION conferences. Lennart Svensson is Professor in the Department of Electrical Engineering at Chalmers University of Technology, Gothenberg. His research focuses on nonlinear filtering, deep learning, and tracking in particular. He has organized a massive open online course on multiple object tracking, and received paper awards at the International Conference on Information Fusion in 2009, 2010, 2017, 2019, and 2021.

Review :
'The book represents an excellent treatise of non-linear filtering from a Bayesian perspective. It has a nice balance between details and breadth, and it provides a nice journey from the basics of Bayesian inference to sophisticated filtering methods.' Petar M. Djurić, Stony Brook 'An excellent and pedagogical treatment of the complex world of nonlinear filtering.  It is very valuable for both researchers and practitioners.' Lennart Ljung, Linköping University


Best Sellers


Product Details
  • ISBN-13: 9781108926645
  • Publisher: Cambridge University Press
  • Publisher Imprint: Cambridge University Press
  • Edition: Revised edition
  • Language: English
  • Returnable: N
  • Returnable: N
  • Spine Width: 23 mm
  • Width: 152 mm
  • ISBN-10: 1108926649
  • Publisher Date: 15 Jun 2023
  • Binding: Paperback
  • Height: 228 mm
  • No of Pages: 430
  • Returnable: N
  • Series Title: Series Number 17 Institute of Mathematical Statistics Textbooks
  • Weight: 640 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Bayesian Filtering and Smoothing: (Series Number 17 Institute of Mathematical Statistics Textbooks)
Cambridge University Press -
Bayesian Filtering and Smoothing: (Series Number 17 Institute of Mathematical Statistics Textbooks)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Bayesian Filtering and Smoothing: (Series Number 17 Institute of Mathematical Statistics Textbooks)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!