Data-Driven Fluid Mechanics
Home > Mathematics and Science Textbooks > Physics > Classical mechanics > Physics: Fluid mechanics > Data-Driven Fluid Mechanics: Combining First Principles and Machine Learning
Data-Driven Fluid Mechanics: Combining First Principles and Machine Learning

Data-Driven Fluid Mechanics: Combining First Principles and Machine Learning


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Data-driven methods have become an essential part of the methodological portfolio of fluid dynamicists, motivating students and practitioners to gather practical knowledge from a diverse range of disciplines. These fields include computer science, statistics, optimization, signal processing, pattern recognition, nonlinear dynamics, and control. Fluid mechanics is historically a big data field and offers a fertile ground for developing and applying data-driven methods, while also providing valuable shortcuts, constraints, and interpretations based on its powerful connections to basic physics. Thus, hybrid approaches that leverage both methods based on data as well as fundamental principles are the focus of active and exciting research. Originating from a one-week lecture series course by the von Karman Institute for Fluid Dynamics, this book presents an overview and a pedagogical treatment of some of the data-driven and machine learning tools that are leading research advancements in model-order reduction, system identification, flow control, and data-driven turbulence closures.

Table of Contents:
Part I. Motivation: 1. Analysis, modeling and control of the cylinder wake B. R. Noack, A. Ehlert, C. N. Nayeri and M. Morzynski; 2. Coherent structures in turbulence: a data science perspective J. Jiménez; 3. Machine learning in fluids: pairing methods with problems S. Brunton; Part II. Methods from Signal Processing: 4. Continuous and discrete LTI systems M. A. Mendez; 5. Time-frequency analysis and wavelets S. Discetti; Part III. Data-Driven Decompositions: 6. The proper orthogonal decomposition S. Dawson; 7. The dynamic mode decomposition: from Koopman theory to applications P. J. Schmid; 8. Generalized and multiscale modal analysis M. A. Mendez; 9. Good practice and applications of data-driven modal analysis A. Ianiro; Part IV. Dynamical Systems: 10. Linear dynamical systems and control S. Dawson; 11. Nonlinear dynamical systems S. Brunton; 12. Methods for system identification S. Brunton; 13. Modern tools for the stability analysis of fluid flows P. J. Schmid; Part V. Applications: 14. Machine learning for reduced-order modeling B. R. Noack, D. Fernex and R. Semaan; 15. Advancing reacting flow simulations with data-driven models K. Zdybal, G. D'Alessio, G. Aversano, M. R. Malik, A. Coussement, J. C. Sutherland and A. Parente; 16. Reduced-order modeling for aerodynamic applications and multidisciplinary design optimization S. Görtz, P. Bekemeyer, M. Abu-Zurayk, T. Franz and M. Ripepi; 17. Machine learning for turbulence control B. R. Noack, G. Y. Cornejo Maceda, F. Lusseyran; 18. Deep reinforcement learning applied to active flow control J. Rabault and A. Kuhnle; Part VI. Perspectives: 19. The Computer as scientist J. Jiménez; References.

About the Author :
Miguel A. Mendez is Assistant Professor at the von Karman Institute for Fluid Dynamics, Belgium. He has extensively used data-driven methods for post-processing numerical and experimental data in fluid dynamics. He developed a novel multi-resolution extension of POD which has been extensively used in various flow configurations of industrial interest. His current interests include data-driven modeling and reinforcement learning. Andrea Ianiro is Associate Professor at Universidad Carlos III de Madrid, Spain. He is a well-known expert in the field of experimental thermo-fluids. He has pioneered the use of data-driven modal analysis in heat transfer studies for impinging jets and wall-bounded flows with heat transfer. He extensively applies these techniques in combination with advanced measurement techniques such as 3D PIV and IR thermography. Bernd R. Noack is National Talent Professor at the Harbin Institute of Technology, China. He has pioneered the automated learning of control laws and reduced-order models for real-world experiments as well as nonlinear model-based control from first principles. He is Fellow of the American Physical Society and Mendeley/Web-of-Science Highly Cited Researcher with about 300 publications including 5 books, 2 US patents and over 100 journal publications. Steven L. Brunton is Professor at the University of Washington, USA. He has pioneered the use of machine learning to fluid mechanics in areas ranging from system identification to flow control. He has an international reputation for his excellent teaching and communication skills, which have contributed to the dissemination of his research through textbooks and online lectures.


Best Sellers


Product Details
  • ISBN-13: 9781108902267
  • Publisher: Cambridge University Press (Virtual Publishing)
  • Publisher Imprint: Cambridge University Press (Virtual Publishing)
  • Language: English
  • ISBN-10: 110890226X
  • Publisher Date: 25 Jan 2023
  • Binding: Digital download and online
  • Sub Title: Combining First Principles and Machine Learning


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Data-Driven Fluid Mechanics: Combining First Principles and Machine Learning
Cambridge University Press (Virtual Publishing) -
Data-Driven Fluid Mechanics: Combining First Principles and Machine Learning
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Data-Driven Fluid Mechanics: Combining First Principles and Machine Learning

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!