Buy The Science of Deep Learning by Iddo Drori at Bookstore UAE
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer science > Artificial intelligence > Pattern recognition > The Science of Deep Learning
The Science of Deep Learning

The Science of Deep Learning


     0     
5
4
3
2
1



Available


X
About the Book

The Science of Deep Learning emerged from courses taught by the author that have provided thousands of students with training and experience for their academic studies, and prepared them for careers in deep learning, machine learning, and artificial intelligence in top companies in industry and academia. The book begins by covering the foundations of deep learning, followed by key deep learning architectures. Subsequent parts on generative models and reinforcement learning may be used as part of a deep learning course or as part of a course on each topic. The book includes state-of-the-art topics such as Transformers, graph neural networks, variational autoencoders, and deep reinforcement learning, with a broad range of applications. The appendices provide equations for computing gradients in backpropagation and optimization, and best practices in scientific writing and reviewing. The text presents an up-to-date guide to the field built upon clear visualizations using a unified notation and equations, lowering the barrier to entry for the reader. The accompanying website provides complementary code and hundreds of exercises with solutions.

Table of Contents:
Preface; Notation; Part I. Foundations: 1. Introduction; 2. Forward and backpropagation; 3. Optimization; 4. Regularization; Part II. Architectures: 5. Convolutional neural networks; 6. Sequence models; 7. Graph neural networks; 8. Transformers; Part III. Generative Models: 9. Generative adversarial networks; 10. Variational autoencoders; Part IV. Reinforcement Learning: 11. Reinforcement learning; 12. Deep reinforcement learning; Part V. Applications: 13. Applications; Appendices; References; Index.

About the Author :
Iddo Drori is a faculty member and associate professor at Boston University, a lecturer at MIT, and adjunct associate professor at Columbia University. He was a visiting associate professor at Cornell University in operations research and information engineering, and research scientist and adjunct professor at NYU Center for Data Science, Courant Institute, and NYU Tandon. He holds a PhD in computer science and was a postdoctoral research fellow at Stanford University in statistics. He also holds an MBA in organizational behavior and entrepreneurship and has a decade of industry research and leadership experience. His main research is in machine learning, AI, and computer vision, with 70 publications and over 5,100 citations, and he has taught over 35 courses in computer science. He has won multiple competitions in computer vision conferences and received multiple best paper awards in machine learning conferences.

Review :
'In the avalanche of books on Deep Learning, this one stands out. Iddo Drori has mastered reinforcement learning - in its technical meaning and in his successful, commonsense approach to teaching and understanding.' Gilbert Strang, Massachusetts Institute of Technology 'This book covers an impressive breadth of foundational concepts and algorithms behind modern deep learning. By reading this book, readers will quickly but thoroughly learn and appreciate foundations and advances of modern deep learning.' Kyunghyun Cho, New York University 'This book offers a fascinating tour of the field of deep learning, which in only ten years has come to revolutionize almost every area of computing. Drori provides concise descriptions of many of the most important developments, combining unified mathematical notation and ample figures to form an essential resource for students and practitioners alike.' Jonathan Ventura, Cal Poly 'Drori's textbook goes under the hood of deep learning, covering a broad swath of modern techniques in optimization that are useful for efficiently training neural networks. The book also covers regularization methods to avoid overfitting, a common issue when working with deep learning models. Overall, this is an excellent textbook for students and practitioners who want to gain a deeper understanding of deep learning.' Madeleine Udell, Stanford University 'This textbook provides an excellent introduction to contemporary methods and models in deep learning. I expect this book to become a key resource in data science education for students and researchers.' Nakul Verma, Columbia University 'This new book by Professor Drori brings fresh insights from his experience teaching thousands of students at Columbia, MIT, and NYU during the past several years. The book is a unique resource and opportunity for educators and researchers worldwide to build on his highly successful deep learning course.' Claudio Silva, New York University 'Drori's book covers deep learning, from fundamentals to applications. The fundamentals are covered with clear figures and examples, making the underlying algorithms easy to understand for non-specialists. The multidisciplinary applications are thoughtfully selected to illustrate the broad applications of deep neural networks to specialized domains while highlighting the common themes and architectures between them.' Tonio Buonassisi, Professor of Mechanical Engineering, Massachusetts Institute of Technology 'Drori's textbook makes the learning curve for deep learning a whole lot easier to climb. It follows a rigid scientific narrative, accompanied by a trove of code examples and visualizations. These enable a truly multi-modal approach to learning that will allow many students to understand the material better and sets them on a path of exploration.' Joaquin Vanschoren, Assistant Professor of Machine Learning, Eindhoven University of Technology 'This is an instrumental book which I highly recommend to all students studying modern AI techniques.' Alfred Zimmermann, Reutlingen University 'This book presents the fundamental concepts and algorithms of deep learning such as NN, Optimisation, CNN, RNN, Transformer, GNN, Generative models, and Reinforcement learning. Teaching these algorithms to the bachelor students are essential. Further, the book finishes with applications and use cases that would further help the reader to apply those fundamental algorithms and build projects. I really like the way this book written. It introduces less jargon but more essential and sufficient content.' Md Zia Ullah, Edinburgh Napier University


Best Sellers


Product Details
  • ISBN-13: 9781108835084
  • Publisher: Cambridge University Press
  • Publisher Imprint: Cambridge University Press
  • Height: 250 mm
  • No of Pages: 360
  • Returnable: N
  • Returnable: N
  • Weight: 864 gr
  • ISBN-10: 1108835082
  • Publisher Date: 18 Aug 2022
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Returnable: N
  • Spine Width: 20 mm
  • Width: 175 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
The Science of Deep Learning
Cambridge University Press -
The Science of Deep Learning
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

The Science of Deep Learning

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!