Computer Age Statistical Inference, Student Edition
Home > Mathematics and Science Textbooks > Mathematics > Probability and statistics > Computer Age Statistical Inference, Student Edition: Algorithms, Evidence, and Data Science(Series Number 6 Institute of Mathematical Statistics Monographs)
Computer Age Statistical Inference, Student Edition: Algorithms, Evidence, and Data Science(Series Number 6 Institute of Mathematical Statistics Monographs)

Computer Age Statistical Inference, Student Edition: Algorithms, Evidence, and Data Science(Series Number 6 Institute of Mathematical Statistics Monographs)


     0     
5
4
3
2
1



International Edition


X
About the Book

The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and influence. 'Data science' and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? How does it all fit together? Now in paperback and fortified with exercises, this book delivers a concentrated course in modern statistical thinking. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov Chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. Each chapter ends with class-tested exercises, and the book concludes with speculation on the future direction of statistics and data science.

Table of Contents:
Part I. Classic Statistical Inference: 1. Algorithms and inference; 2. Frequentist inference; 3. Bayesian inference; 4. Fisherian inference and maximum likelihood estimation; 5. Parametric models and exponential families; Part II. Early Computer-Age Methods: 6. Empirical Bayes; 7. James–Stein estimation and ridge regression; 8. Generalized linear models and regression trees; 9. Survival analysis and the EM algorithm; 10. The jackknife and the bootstrap; 11. Bootstrap confidence intervals; 12. Cross-validation and Cp estimates of prediction error; 13. Objective Bayes inference and Markov chain Monte Carlo; 14. Statistical inference and methodology in the postwar era; Part III. Twenty-First-Century Topics: 15. Large-scale hypothesis testing and false-discovery rates; 16. Sparse modeling and the lasso; 17. Random forests and boosting; 18. Neural networks and deep learning; 19. Support-vector machines and kernel methods; 20. Inference after model selection; 21. Empirical Bayes estimation strategies; Epilogue; References; Author Index; Subject Index.

About the Author :
Bradley Efron is Max H. Stein Professor, Professor of Statistics, and Professor of Biomedical Data Science at Stanford University. He has held visiting faculty appointments at Harvard, UC Berkeley, and Imperial College London. Efron has worked extensively on theories of statistical inference, and is the inventor of the bootstrap sampling technique. He received the National Medal of Science in 2005, the Guy Medal in Gold of the Royal Statistical Society in 2014, and the International Prize in Statistics in 2019. Trevor Hastie is John A. Overdeck Professor, Professor of Statistics, and Professor of Biomedical Data Science at Stanford University. He is coauthor of The Elements of Statistical Learning (2009), a key text in the field of modern data analysis. He is also known for his work on generalized additive models, and for his contributions to the R computing environment. Hastie was elected to the National Academy of Sciences in 2018, received the Sigillum Magnum from the University of Bologna in 2019, and the Leo Breiman award from the American Statistical Association in 2020.

Review :
'Among other things, it is an attempt to characterize the current state of statistics by identifying important tools in the context of their historical development. It also offers an enlightening series of illustrations of the interplay between computation and inference ... This is an attractive book that invites browsing by anyone interested in statistics and its future directions.' Bill Satzer, Mathematical Association of America Reviews 'Efron and Hastie (both, Stanford Univ.) have superbly crafted a central text/reference book that presents a broad overview of modern statistics. The work examines major developments in computation from the late-20th and early-21st centuries, ranging from electronic computations to 'big data' analysis. Focusing primarily on the last six decades, the text thoroughly documents the progression within the discipline of statistics ... This text is highly recommended for graduate libraries.' D. J. Gougeon, Choice 'My take on Computer Age Statistical Inference is that experienced statisticians will find it helpful to have such a compact summary of twentieth-century statistics, even if they occasionally disagree with the book's emphasis; students beginning the study of statistics will value the book as a guide to statistical inference that may offset the dangerously mind-numbing experience offered by most introductory statistics textbooks; and the rest of us non-experts interested in the details will enjoy hundreds of hours of pleasurable reading.' Joseph Rickert, RStudio (www.rstudio.com) "A masterful guide to how the inferential bases of classical statistics can provide a principled disciplinary frame for the data science of the twenty-first century." Stephen Stigler, University of Chicago, and author of Seven Pillars of Statistical Wisdom "Absolutely brilliant. This beautifully written compendium reviews many big statistical ideas, including the authors' own. A must for anyone engaged creatively in statistics and the data sciences, for repeated use. Efron and Hastie demonstrate the ever-growing power of statistical reasoning, past, present, and future." Carl Morris, Harvard University, Massachusetts "Computer Age Statistical Inference gives a lucid guide to modern statistical inference for estimation, hypothesis testing, and prediction. The book seamlessly integrates statistical thinking with computational thinking, while covering a broad range of powerful algorithms for learning from data. It is extraordinarily rare and valuable to have such a unified treatment of classical (and classic) statistical ideas and recent 'big data' and machine learning ideas. Accessible real-world examples and insightful remarks can be found throughout the book." Joseph K. Blitzstein, Harvard University, Massachusetts "Computer Age Statistical Inference offers a refreshing view of modern statistics. Algorithmics are put on equal footing with intuition, properties, and the abstract arguments behind them. The methods covered are indispensable to practicing statistical analysts in today's big data and big computing landscape." Robert Gramacy, University of Chicago Booth School of Business "Efron and Hastie are two immensely talented and accomplished scholars who have managed to brilliantly weave the fiber of 250 years of statistical inference into the more recent historical mechanization of computing. This book provides the reader with a mid-level overview of the last 60-some years by detailing the nuances of a statistical community that, historically, has been self-segregated into camps of Bayes, frequentist, and Fisher yet in more recent years has been unified by advances in computing. What is left to be explored is the emergence of, and role that, big data theory will have in bridging the gap between data science and statistical methodology. Whatever the outcome, the authors provide a vision of high-speed computing having tremendous potential to enable the contributions of statistical inference toward methodologies that address both global and societal issues." Rebecca Doerge, Carnegie Mellon University, Pennsylvania "Efron and Hastie guide us through the maze of breakthrough statistical methodologies following the computing evolution: why they were developed, their properties, and how they are used. Highlighting their origins, the book helps us understand each method's roles in inference and/or prediction. The inference-prediction distinction maintained throughout the book is a welcome and important novelty in the landscape of statistics books." Galit Shmueli, National Tsing Hua University "Every aspiring data scientist should carefully study this book, use it as a reference, and carry it with them everywhere. The presentation through the two-and-a-half-century history of statistical inference provides insight into the development of the discipline, putting data science in its historical place." Mark Girolami, Imperial College London "How and why is computational statistics taking over the world? In this serious work of synthesis that is also fun to read, Efron and Hastie, two pioneers in the integration of parametric and nonparametric statistical ideas, give their take on the unreasonable effectiveness of statistics and machine learning in the context of a series of clear, historically informed examples." Andrew Gelman, Columbia University, New York "In this book, two masters of modern statistics give an insightful tour of the intertwined worlds of statistics and computation. Through a series of important topics, Efron and Hastie illuminate how modern methods for predicting and understanding data are rooted in both statistical and computational thinking. They show how the rise of computational power has transformed traditional methods and questions, and how it has pointed us to new ways of thinking about statistics." David Blei, Columbia University, New York "This is a guided tour of modern statistics that emphasizes the conceptual and computational advances of the last century. Authored by two masters of the field, it offers just the right mix of mathematical analysis and insightful commentary." Hal Varian, Google "This is a terrific book. It gives a clear, accessible, and entertaining account of the interplay between theory and methodological development that has driven statistics in the computer age. The authors succeed brilliantly in locating contemporary algorithmic methodologies for analysis of 'big data' within the framework of established statistical theory." Alastair Young, Imperial College London "This unusual book describes the nature of statistics by displaying multiple examples of the way the field has evolved over the past sixty years, as it has adapted to the rapid increase in available computing power. The authors' perspective is summarized nicely when they say, 'very roughly speaking, algorithms are what statisticians do, while inference says why they do them'. The book explains this 'why'; that is, it explains the purpose and progress of statistical research, through a close look at many major methods, methods the authors themselves have advanced and studied at great length. Both enjoyable and enlightening, Computer Age Statistical Inference is written especially for those who want to hear the big ideas, and see them instantiated through the essential mathematics that defines statistical analysis. It makes a great supplement to the traditional curricula for beginning graduate students." Rob Kass, Carnegie Mellon University, Pennsylvania


Best Sellers


Product Details
  • ISBN-13: 9781108823418
  • Publisher: Cambridge University Press
  • Publisher Imprint: Cambridge University Press
  • Height: 228 mm
  • No of Pages: 506
  • Returnable: N
  • Series Title: Series Number 6 Institute of Mathematical Statistics Monographs
  • Sub Title: Algorithms, Evidence, and Data Science
  • Width: 152 mm
  • ISBN-10: 1108823416
  • Publisher Date: 17 Jun 2021
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Returnable: N
  • Spine Width: 22 mm
  • Weight: 820 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Computer Age Statistical Inference, Student Edition: Algorithms, Evidence, and Data Science(Series Number 6 Institute of Mathematical Statistics Monographs)
Cambridge University Press -
Computer Age Statistical Inference, Student Edition: Algorithms, Evidence, and Data Science(Series Number 6 Institute of Mathematical Statistics Monographs)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Computer Age Statistical Inference, Student Edition: Algorithms, Evidence, and Data Science(Series Number 6 Institute of Mathematical Statistics Monographs)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!