Principles of Statistical Analysis
Home > Mathematics and Science Textbooks > Mathematics > Probability and statistics > Principles of Statistical Analysis: Learning from Randomized Experiments(Institute of Mathematical Statistics Textbooks)
Principles of Statistical Analysis: Learning from Randomized Experiments(Institute of Mathematical Statistics Textbooks)

Principles of Statistical Analysis: Learning from Randomized Experiments(Institute of Mathematical Statistics Textbooks)


     0     
5
4
3
2
1



International Edition


X
About the Book

This compact course is written for the mathematically literate reader who wants to learn to analyze data in a principled fashion. The language of mathematics enables clear exposition that can go quite deep, quite quickly, and naturally supports an axiomatic and inductive approach to data analysis. Starting with a good grounding in probability, the reader moves to statistical inference via topics of great practical importance – simulation and sampling, as well as experimental design and data collection – that are typically displaced from introductory accounts. The core of the book then covers both standard methods and such advanced topics as multiple testing, meta-analysis, and causal inference.

Table of Contents:
Preface; Acknowledgments; Part I. Elements of Probability Theory: 1. Axioms of probability theory; 2. Discrete probability spaces; 3. Distributions on the real line; 4. Discrete distributions; 5. Continuous distributions; 6. Multivariate distributions; 7. Expectation and concentration; 8. Convergence of random variables; 9. Stochastic processes; Part II. Practical Considerations: 10. Sampling and simulation; 11. Data collection; Part III. Elements of Statistical Inference: 12. Models, estimators, and tests; 13. Properties of estimators and tests; 14. One proportion; 15. Multiple proportions; 16. One numerical sample; 17. Multiple numerical samples; 18. Multiple paired numerical samples; 19. Correlation analysis; 20. Multiple testing; 21. Regression analysis; 22. Foundational issues; References; Index.

About the Author :
Ery Arias-Castro is a professor in the Department of Mathematics and in the Halıcıoğlu Data Science Institute at the University of California, San Diego, where he specializes in theoretical statistics and machine learning. His education includes a bachelor's degree in mathematics and a master's degree in artificial intelligence, both from École Normale Supérieure de Cachan (now École Normale Supérieure Paris-Saclay) in France, as well as a Ph.D. in statistics from Stanford University in the United States.

Review :
'With the rapid development of data-driven decision making, statistical methods have become indispensable in countless domains of science, engineering, and management science, to name a few. Ery Arias-Castro's excellent text gives a self-contained and remarkably broad exposition of the current diversity of concepts and methods developed to tackle the challenges of data science. Simply put, everyone serious about understanding the theory behind data science should be exposed to the topics covered in this book.' Philippe Rigollet, Department of Mathematics, Massachusetts Institute of Technology 'A course on statistical modeling and inference has been a staple of many first-year graduate engineering programs. While there are many excellent textbooks on this subject, much of the material is inspired by models of physical systems, and as such these books deal extensively with parametric inference. The emerging data revolution, on the other hand, requires an engineering student to develop an understanding of statistical inference rooted in problems inspired by data-driven applications, and this book fills that need. Arias-Castro weaves together diverse concepts such as data collection, sampling, and inference in a unified manner. He lucidly presents the mathematical foundations of statistical data analysis, and covers advanced topics on data analysis. With over 700 problems and computer exercises, this book will serve the needs of beginner and advanced engineering students alike.' Venkatesh Saligrama, Data Science Faculty Fellow, Department of Electrical and Computer Engineering, Department of Computer Science (by courtesy), Boston University 'In this book, aimed at senior undergraduates or beginning graduate students with a reasonable mathematical background, the author proposes a self-contained and yet concise introduction to statistical analysis. By putting a strong emphasis on the randomization principle, he provides a coherent and elegant perspective on modern statistical practice. Some of the later chapters also form a good basis for a reading group. I will be recommending this excellent book to my collaborators.' Nicolas Verzelen, Mathematics, Computer Science, Physics, and Systems Department, University of Montpellier 'This text is highly recommended for undergraduate students wanting to grasp the key ideas of modern data analysis. Arias-Castro achieves something that is rare in the art of teaching statistical science - he uses mathematical language in an intelligible and highly helpful way, without surrendering key intuitions of statistics to formalism and proof. In this way, the reader can get through an impressive amount of material without, however, ever getting into muddy waters.' Richard Nickl, Statistical Laboratory, Cambridge University


Best Sellers


Product Details
  • ISBN-13: 9781108747448
  • Publisher: Cambridge University Press
  • Publisher Imprint: Cambridge University Press
  • Height: 228 mm
  • No of Pages: 400
  • Returnable: N
  • Series Title: Institute of Mathematical Statistics Textbooks
  • Sub Title: Learning from Randomized Experiments
  • Width: 152 mm
  • ISBN-10: 1108747442
  • Publisher Date: 25 Aug 2022
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Returnable: N
  • Spine Width: 21 mm
  • Weight: 530 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Principles of Statistical Analysis: Learning from Randomized Experiments(Institute of Mathematical Statistics Textbooks)
Cambridge University Press -
Principles of Statistical Analysis: Learning from Randomized Experiments(Institute of Mathematical Statistics Textbooks)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Principles of Statistical Analysis: Learning from Randomized Experiments(Institute of Mathematical Statistics Textbooks)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!