High-Dimensional Data Analysis with Low-Dimensional Models
Home > Reference > Research and information: general > Data science and analysis: general > High-Dimensional Data Analysis with Low-Dimensional Models: Principles, Computation, and Applications
High-Dimensional Data Analysis with Low-Dimensional Models: Principles, Computation, and Applications

High-Dimensional Data Analysis with Low-Dimensional Models: Principles, Computation, and Applications


     0     
5
4
3
2
1



Available


X
About the Book

Connecting theory with practice, this systematic and rigorous introduction covers the fundamental principles, algorithms and applications of key mathematical models for high-dimensional data analysis. Comprehensive in its approach, it provides unified coverage of many different low-dimensional models and analytical techniques, including sparse and low-rank models, and both convex and non-convex formulations. Readers will learn how to develop efficient and scalable algorithms for solving real-world problems, supported by numerous examples and exercises throughout, and how to use the computational tools learnt in several application contexts. Applications presented include scientific imaging, communication, face recognition, 3D vision, and deep networks for classification. With code available online, this is an ideal textbook for senior and graduate students in computer science, data science, and electrical engineering, as well as for those taking courses on sparsity, low-dimensional structures, and high-dimensional data. Foreword by Emmanuel Candès.

Table of Contents:
Foreword; Preface; Acknowledgements; 1. Introduction; Part I. Principles of Low-Dimensional Models: 2. Sparse Signal Models; 3. Convex Methods for Sparse Signal Recovery; 4. Convex Methods for Low-Rank Matrix Recovery; 5. Decomposing Low-Rank and Sparse Matrices; 6. Recovering General Low-Dimensional Models; 7. Nonconvex Methods for Low-Dimensional Models; Part II. Computation for Large-Scale Problems: 8. Convex Optimization for Structured Signal Recovery; 9. Nonconvex Optimization for High-Dimensional Problems; Part III. Applications to Real-World Problems: 10. Magnetic Resonance Imaging; 11. Wideband Spectrum Sensing; 12. Scientific Imaging Problems; 13. Robust Face Recognition; 14. Robust Photometric Stereo; 15. Structured Texture Recovery; 16. Deep Networks for Classification; Appendices: Appendix A. Facts from Linear Algebra and Matrix Analysis; Appendix B. Convex Sets and Functions; Appendix C. Optimization Problems and Optimality Conditions; Appendix D. Methods for Optimization; Appendix E. Facts from High-Dimensional Statistics; Bibliography; List of Symbols; Index.

About the Author :
John Wright is an Associate Professor in the Electrical Engineering Department and the Data Science Institute at Columbia University. Yi Ma is a Professor in the Department of Electrical Engineering and Computer Sciences at the University of California, Berkeley. He is a Fellow of the IEEE, ACM, and SIAM.

Review :
'Students will learn a lot from reading this book … They will learn about mathematical reasoning, they will learn about data models and about connecting those to reality, and they will learn about algorithms. The book also contains computer scripts so that we can see ideas in action, and carefully crafted exercises making it perfect for upper-level undergraduate or graduate-level instruction. The breadth and depth make this a reference for anyone interested in the mathematical foundations of data science.' Emmanuel Candès, Stanford University (from the foreword) 'At the very core of our ability to process data stands the fact that sources of information are structured. Modeling data, explicitly or implicitly, is our way of exposing this structure and exploiting it, being the essence of the fields of signal and image processing and machine learning. The past two decades have brought a revolution to our understanding of these facts, and this 'must-read' book provides the foundations of these recent developments, covering theoretical, numerical, and applicative aspects of this field in a thorough and clear manner.' Michael Elad, Technion – Israel Institute of Technology


Best Sellers


Product Details
  • ISBN-13: 9781108489737
  • Publisher: Cambridge University Press
  • Publisher Imprint: Cambridge University Press
  • Height: 251 mm
  • No of Pages: 650
  • Returnable: N
  • Spine Width: 36 mm
  • Weight: 1430 gr
  • ISBN-10: 1108489737
  • Publisher Date: 13 Jan 2022
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Returnable: N
  • Sub Title: Principles, Computation, and Applications
  • Width: 175 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
High-Dimensional Data Analysis with Low-Dimensional Models: Principles, Computation, and Applications
Cambridge University Press -
High-Dimensional Data Analysis with Low-Dimensional Models: Principles, Computation, and Applications
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

High-Dimensional Data Analysis with Low-Dimensional Models: Principles, Computation, and Applications

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!