Buy Processing Networks by J. Michael Harrison - Bookswagon
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Mathematics > Probability and statistics > Processing Networks: Fluid Models and Stability
Processing Networks: Fluid Models and Stability

Processing Networks: Fluid Models and Stability


     0     
5
4
3
2
1



Available


X
About the Book

This state-of-the-art account unifies material developed in journal articles over the last 35 years, with two central thrusts: It describes a broad class of system models that the authors call 'stochastic processing networks' (SPNs), which include queueing networks and bandwidth sharing networks as prominent special cases; and in that context it explains and illustrates a method for stability analysis based on fluid models. The central mathematical result is a theorem that can be paraphrased as follows: If the fluid model derived from an SPN is stable, then the SPN itself is stable. Two topics discussed in detail are (a) the derivation of fluid models by means of fluid limit analysis, and (b) stability analysis for fluid models using Lyapunov functions. With regard to applications, there are chapters devoted to max-weight and back-pressure control, proportionally fair resource allocation, data center operations, and flow management in packet networks. Geared toward researchers and graduate students in engineering and applied mathematics, especially in electrical engineering and computer science, this compact text gives readers full command of the methods.

Table of Contents:
1. Introduction; 2. Stochastic processing networks; 3. Markov representations; 4. Extensions and complements; 5. Is stability achievable?; 6. Fluid limits, fluid equations and positive recurrence; 7. Fluid equations that characterize specific policies; 8. Proving fluid model stability using Lyapunov functions; 9. Max-weight and back-pressure control; 10. Proportionally fair resource allocation; 11. Task allocation in server farms; 12. Multi-hop packet networks; Appendix A. Selected topics in real analysis; Appendix B. Selected topics in probability; Appendix C. Discrete-time Markov chains; Appendix D. Continuous-time Markov chains and phase-type distributions; Appendix E. Markovian arrival processes; Appendix F. Convergent square matrices.

About the Author :
Jim Dai received his PhD in mathematics from Stanford University. He is currently Presidential Chair Professor in the Institute for Data and Decision Analytics at The Chinese University of Hong Kong, Shenzhen. He is also the Leon C. Welch Professor of Engineering in the School of Operations Research and Information Engineering at Cornell University. He was honored by the Applied Probability Society of INFORMS with its Erlang Prize (1998) and with two Best Publication Awards (1997 and 2017). In 2018 he received The Achievement Award from ACM SIGMETRICS. Professor Dai served as Editor-In-Chief of Mathematics of Operations Research from 2012 to 2018. J. Michael Harrison earned degrees in industrial engineering and operations research before joining the faculty of Stanford University's Graduate School of Business, where he served for 43 years. His research concerns stochastic models in business and engineering, including mathematical finance and processing network theory. His previous books include Brownian Models of Performance and Control (2013). Professor Harrison has been honored by INFORMS with its Expository Writing Award (1998), the Lanchester Prize for best research publication (2001), and the John von Neumann Theory Prize (2004); he was elected to the U.S. National Academy of Engineering in 2008.

Review :
'The deep and rich theory of stochastic processing networks has served as the analytical foundation for the study of communication networks, cloud computing systems, and manufacturing networks. This book by two of the pioneers of the theory presents an authoritative and comprehensive treatment of the topic, and will serve as an important reference to researchers in the area.' R. Srikant, University of Illinois at Urbana-Champaign 'A system of interconnected resources can become overloaded and unstable even though each of its individual resources has the capacity to meet the demands on it. This striking observation, first made thirty years ago, has stimulated a major field of research. This book, written by two of the pioneers and leading researchers in the field, is a clear and authoritative account of the state-of-the-art.' Frank Kelly, University of Cambridge 'This book provides an elegant and unified exposition of the general modeling framework of stochastic processing networks (SPNs) and associated theory of stability using fluid models. Much of this material was only previously available in dispersed journal articles. Adopting a continuous-time Markov chain description for SPNs, valid under fairly general assumptions on arrivals, service times and controls, enables a self-contained, accessible treatment. An array of interesting examples and extensions, especially involving applications for telecommunication and data networks, enliven the volume. This monograph will be an invaluable premier resource for graduate students and researchers in computer science, electrical and industrial engineering, applied mathematics and operations management interested in theory and applications of stochastic processing networks.' Ruth J. Williams, University of California, San Diego


Best Sellers


Product Details
  • ISBN-13: 9781108488891
  • Publisher: Cambridge University Press
  • Publisher Imprint: Cambridge University Press
  • Height: 234 mm
  • No of Pages: 404
  • Returnable: N
  • Spine Width: 23 mm
  • Weight: 779 gr
  • ISBN-10: 1108488897
  • Publisher Date: 15 Oct 2020
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Returnable: N
  • Sub Title: Fluid Models and Stability
  • Width: 156 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Processing Networks: Fluid Models and Stability
Cambridge University Press -
Processing Networks: Fluid Models and Stability
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Processing Networks: Fluid Models and Stability

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!