Buy Machine Learning for Speaker Recognition - Bookswagon
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Electronics and communications engineering > Machine Learning for Speaker Recognition
Machine Learning for Speaker Recognition

Machine Learning for Speaker Recognition


     0     
5
4
3
2
1



International Edition


X
About the Book

This book will help readers understand fundamental and advanced statistical models and deep learning models for robust speaker recognition and domain adaptation. This useful toolkit enables readers to apply machine learning techniques to address practical issues, such as robustness under adverse acoustic environments and domain mismatch, when deploying speaker recognition systems. Presenting state-of-the-art machine learning techniques for speaker recognition and featuring a range of probabilistic models, learning algorithms, case studies, and new trends and directions for speaker recognition based on modern machine learning and deep learning, this is the perfect resource for graduates, researchers, practitioners and engineers in electrical engineering, computer science and applied mathematics.

Table of Contents:
Part I. Fundamental Theories: 1. Introduction; 2. Learning algorithms; 3. Machine learning models; Part II. Advanced Studies: 4. Deep learning models; 5. Robust speaker verification; 6. Domain adaptation; 7. Dimension reduction and data augmentation; 8. Future direction; Index.

About the Author :
Man-Wai Mak is Associate Professor of Department of Electronic and Information Engineering at The Hong Kong Polytechnic University. Jen-Tzung Chien is a Chair Professor at the Department of Electrical and Computer Engineering, National Chiao Tung University, Taiwan. He has published extensively, including the book Bayesian Speech and Language Processing (Cambridge 2015). He is currently serving as an elected member of the IEEE Machine Learning for Signal Processing (MLSP) Technical Committee.

Review :
'There is a need for an accessible textbook to help newcomers to enter the field [of automatic speaker recognition]. Machine Learning for Speaker Recognition by Man-Wai Mak and Jen-Tzung Chien serves such a need. Both authors are highly seasoned in the field. They cover both fundamental techniques and state-of-the-art methods at an accessible level using the language of modern probabilistic machine learning. The authors cover different components of speaker recognition systems including feature extraction, back-end modeling and scoring, along with various case studies. The book is well suited for the needs of graduate students and researchers in electrical engineering and computer science, along with practitioners. Apart from basic prerequisites in calculus, linear algebra, probabilities and statistics, the textbook provides a coherent and self-contained journey into what modern automatic speaker recognition is about.' Tomi Kinnunen, University of Eastern Finland 'The topical coverage is spot-on, and the text discusses many key algorithms that support statistical learning approaches, including hybrid models, deep learning classification, and generative methods. In addition, the authors provide a deep mathematical exploration into versions of algorithms, optimization approaches, and domain adaptation statistics within the context of signal processing. The extensive diagrams, linear algebra notation, and mathematical calculus machinery will support developers who are building new implementations or need to look under the hood of existing systems. Highly Recommended.' J. Brzezinski, Choice


Best Sellers


Product Details
  • ISBN-13: 9781108428125
  • Publisher: Cambridge University Press
  • Publisher Imprint: Cambridge University Press
  • Height: 250 mm
  • No of Pages: 334
  • Returnable: N
  • Returnable: N
  • Weight: 760 gr
  • ISBN-10: 1108428126
  • Publisher Date: 19 Nov 2020
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Returnable: N
  • Spine Width: 19 mm
  • Width: 177 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Machine Learning for Speaker Recognition
Cambridge University Press -
Machine Learning for Speaker Recognition
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Machine Learning for Speaker Recognition

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!