Bayesian Econometric Methods
Home > Business and Economics > Economics > Econometrics and economic statistics > Bayesian Econometric Methods: (Series Number 7 Econometric Exercises)
Bayesian Econometric Methods: (Series Number 7 Econometric Exercises)

Bayesian Econometric Methods: (Series Number 7 Econometric Exercises)


     0     
5
4
3
2
1



International Edition


X
About the Book

Bayesian Econometric Methods examines principles of Bayesian inference by posing a series of theoretical and applied questions and providing detailed solutions to those questions. This second edition adds extensive coverage of models popular in finance and macroeconomics, including state space and unobserved components models, stochastic volatility models, ARCH, GARCH, and vector autoregressive models. The authors have also added many new exercises related to Gibbs sampling and Markov Chain Monte Carlo (MCMC) methods. The text includes regression-based and hierarchical specifications, models based upon latent variable representations, and mixture and time series specifications. MCMC methods are discussed and illustrated in detail - from introductory applications to those at the current research frontier - and MATLAB® computer programs are provided on the website accompanying the text. Suitable for graduate study in economics, the text should also be of interest to students studying statistics, finance, marketing, and agricultural economics.

Table of Contents:
1. The subjective interpretation of probability; 2. Bayesian inference; 3. Point estimation; 4. Frequentist properties of Bayesian estimators; 5. Interval estimation; 6. Hypothesis testing; 7. Prediction; 8. Choice of prior; 9. Asymptotic Bayes; 10. The linear regression model; 11. Basics of random variate generation and posterior simulation; 12. Posterior simulation via Markov chain Monte Carlo; 13. Hierarchical models; 14. Latent variable models; 15. Mixture models; 16. Bayesian methods for model comparison, selection and big data; 17. Univariate time series methods; 18. State space and unobserved components models; 19. Time series models for volatility; 20. Multivariate time series methods; Appendix; Bibliography; Index.

About the Author :
Joshua Chan is Professor of Economics at Purdue University, Indiana. He is interested in building flexible models for large datasets and developing efficient estimation methods. His favorite applications include trend inflation estimation and macroeconomic forecasting. He has co-authored the textbook Statistical Modeling and Computation (2013). Gary Koop is a professor in the Department of Economics at the University of Strathclyde. He received his Ph.D. at the University of Toronto in 1989. His research work in Bayesian econometrics has resulted in numerous publications in top econometrics journals such as the Journal of Econometrics. He has also published several textbooks, including Bayesian Econometrics, and Bayesian Econometric Methods, and is co-editor of The Oxford Handbook of Bayesian Econometrics (2011). He is on the editorial board of several journals, including the Journal of Business and Economic Statistics and the Journal of Applied Econometrics. Dale J. Poirier is Emeritus Professor of Economics and Statistics at the University of California, Irvine. He is a fellow of the Econometric Society, the American Statistical Association, the International Society for Bayesian Analysis, and the Journal of Econometrics. He has been on the Editorial Boards of the Journal of Econometrics and Econometric Theory, and was the founding editor of Econometric Reviews. His previous books include Intermediate Statistics and Econometrics: A Comparative Approach (1995), and The Econometrics of Structural Change (1976). Justin L. Tobias is Professor and Head of the Economics Department at Purdue University, Indiana. He received his Ph.D. from the University of Chicago in 1999 and has contributed to and served as an Associate Editor for several leading econometrics journals, including the Journal of Applied Econometrics and the Journal of Business and Economic Statistics. His work focuses primarily on the development and application of Bayesian microeconometric methods.

Review :
'This volume invigorates the understanding and application of Bayesian econometrics with a uniquely constructive, hands-on approach. By moving seamlessly between theory, methods, and applications, it builds understanding and skills that will serve the novice Bayesian econometrician well, and synthesizes the subject for experienced Bayesian practitioners.' John Geweke, Charles R. Nelson Endowed Professor in Economics, University of Washington 'This book is a terrific resource for anybody who would like to study Bayesian econometrics. It is a thoughtfully crafted textbook in which each chapter contains a brief introduction, followed by carefully chosen learning-by-doing problems with detailed and instructive solutions.' Frank Schorfheide, University of Pennsylvania '… a valuable companion, introducing foundations and methods of the Bayesian approach; elaborates on building blocks of Bayesian inference, model specification and selection, decision-making, and diagnostics; covers most popular uni- and multivariate modeling, including hierarchical and latent variable models; references original literature, also serving researchers looking for a brief introduction to specific topics.' Sylvia Kaufmann, Study Center Gerzensee, Switzerland 'This is an excellent contribution that will greatly expand the understanding of Bayesian econometric methods. Students and instructors will find the easy-to-follow structure and many clearly developed exercises, which reference several recent advances, will build understanding and lead to new insights and better approaches to analysis.' Rodney Strachan, University of Queensland 'This is a wonderful coverage of Bayesian econometrics: from its underlying principles to details of its numerical implementation, all in the context of the key models used in empirical analysis. It will be an invaluable resource for students and researchers alike, and I cannot recommend it too highly.' Gael Martin, Monash University, Australia 'This is an excellent introductory textbook of Bayesian econometrics for senior undergraduate students and graduate students. Unlike other typical textbooks, it nicely illustrates mathematical derivations in detail as solutions of many exercises. Moreover, Matlab computer programs on the website will help understanding of recent simulation methods such as Markov chain Monte Carlo.' Yasuhiro Omori, University of Tokyo 'The text offers broad, thorough, and accessible coverage of important topics in Bayesian econometrics. Delivering both a solid treatment of the foundations of inference and an extensive survey of methodology, and models that are illustrated with numerous empirical examples, the book is an invaluable resource for the practitioner.' Ivan Jeliazkov, University of California, Irvine 'This is a clear, concise, and, above all, practical introduction to Bayesian econometrics. Graduate and advanced undergraduate students will find here a self-contained introduction to Bayesian theory, computation, and applied econometric modeling that can accompany them well into their studies.' William J. McCausland, Université de Montréal


Best Sellers


Product Details
  • ISBN-13: 9781108423380
  • Publisher: Cambridge University Press
  • Publisher Imprint: Cambridge University Press
  • Edition: Revised edition
  • Language: English
  • Returnable: N
  • Returnable: N
  • Spine Width: 26 mm
  • Width: 178 mm
  • ISBN-10: 1108423388
  • Publisher Date: 15 Aug 2019
  • Binding: Hardback
  • Height: 258 mm
  • No of Pages: 484
  • Returnable: N
  • Series Title: Series Number 7 Econometric Exercises
  • Weight: 1028 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Bayesian Econometric Methods: (Series Number 7 Econometric Exercises)
Cambridge University Press -
Bayesian Econometric Methods: (Series Number 7 Econometric Exercises)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Bayesian Econometric Methods: (Series Number 7 Econometric Exercises)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!