Large Sample Covariance Matrices and High-Dimensional Data Analysis
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Mathematics > Probability and statistics > Large Sample Covariance Matrices and High-Dimensional Data Analysis: (Series Number 39 Cambridge Series in Statistical and Probabilistic Mathematics)
22%
Large Sample Covariance Matrices and High-Dimensional Data Analysis: (Series Number 39 Cambridge Series in Statistical and Probabilistic Mathematics)

Large Sample Covariance Matrices and High-Dimensional Data Analysis: (Series Number 39 Cambridge Series in Statistical and Probabilistic Mathematics)


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

High-dimensional data appear in many fields, and their analysis has become increasingly important in modern statistics. However, it has long been observed that several well-known methods in multivariate analysis become inefficient, or even misleading, when the data dimension p is larger than, say, several tens. A seminal example is the well-known inefficiency of Hotelling's T2-test in such cases. This example shows that classical large sample limits may no longer hold for high-dimensional data; statisticians must seek new limiting theorems in these instances. Thus, the theory of random matrices (RMT) serves as a much-needed and welcome alternative framework. Based on the authors' own research, this book provides a firsthand introduction to new high-dimensional statistical methods derived from RMT. The book begins with a detailed introduction to useful tools from RMT, and then presents a series of high-dimensional problems with solutions provided by RMT methods.

Table of Contents:
1. Introduction; 2. Limiting spectral distributions; 3. CLT for linear spectral statistics; 4. The generalised variance and multiple correlation coefficient; 5. The T2-statistic; 6. Classification of data; 7. Testing the general linear hypothesis; 8. Testing independence of sets of variates; 9. Testing hypotheses of equality of covariance matrices; 10. Estimation of the population spectral distribution; 11. Large-dimensional spiked population models; 12. Efficient optimisation of a large financial portfolio.

About the Author :
Jianfeng Yao has rich research experience in random matrix theory and its applications to high-dimensional statistics. In recent years, he has published many authoritative papers in these areas and organised several international workshops on related topics. Shurong Zheng is author of several influential results in random matrix theory including a widely used central limit theorem for eigenvalue statistics of a random Fisher matrix. She has also developed important applications of the inference theory presented in the book to real-life high-dimensional statistics. Zhidong Bai is a world-leading expert in random matrix theory and high-dimensional statistics. He has published over 200 research papers and several specialized monographs, including Spectral Analysis of Large Dimensional Random Matrices (with J. W. Silverstein), for which he won the Natural Science Award of China (Second Class).

Review :
'This is the first book which treats systematic corrections to the classical multivariate statistical procedures so that the resultant procedures can be used for high-dimensional data. The corrections have been done by employing asymptotic tools based on the theory of random matrices.' Yasunori Fujikoshi, Hiroshima University, Japan '… this book is the first to cover these topics and can serve both as a good introduction to the topics as well as a comprehensive reference on the state of the art.' Robert Stelzer, MathSciNet 'This book deals with the analysis of covariance matrices under two different assumptions: large-sample theory and high-dimensional-data theory. While the former approach is the classical framework to derive asymptotics, nevertheless the latter has received increasing attention due to its applications in the emerging field of big-data. Due to its novelty and its relevance in the current research, the authors focus mainly on the high-dimensional-data framework. … The theory and the applications are presented under both the large-sample theory and the high-dimensional-data theory, and thus the reader can easily appreciate the differences between the two approaches. The material is presented in a quite simple manner, and the reader only needs some pre-requisites in basic mathematical statistics, linear algebra, and theory of multivariate normal distributions. Some technical prerequisites are collected in two appendices. Therefore, the book can be used by graduate students and researchers in a wide range of disciplines, ranging from mathematics to applied sciences.' Fabio Rapallo, Zentralblatt MATH


Best Sellers


Product Details
  • ISBN-13: 9781107065178
  • Publisher: Cambridge University Press
  • Publisher Imprint: Cambridge University Press
  • Height: 262 mm
  • No of Pages: 322
  • Returnable: N
  • Returnable: N
  • Spine Width: 23 mm
  • Width: 183 mm
  • ISBN-10: 1107065178
  • Publisher Date: 26 Mar 2015
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Returnable: N
  • Series Title: Series Number 39 Cambridge Series in Statistical and Probabilistic Mathematics
  • Weight: 770 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Large Sample Covariance Matrices and High-Dimensional Data Analysis: (Series Number 39 Cambridge Series in Statistical and Probabilistic Mathematics)
Cambridge University Press -
Large Sample Covariance Matrices and High-Dimensional Data Analysis: (Series Number 39 Cambridge Series in Statistical and Probabilistic Mathematics)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Large Sample Covariance Matrices and High-Dimensional Data Analysis: (Series Number 39 Cambridge Series in Statistical and Probabilistic Mathematics)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!