Kernelization
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Databases > Kernelization: Theory of Parameterized Preprocessing
Kernelization: Theory of Parameterized Preprocessing

Kernelization: Theory of Parameterized Preprocessing


     0     
5
4
3
2
1



Available


X
About the Book

Preprocessing, or data reduction, is a standard technique for simplifying and speeding up computation. Written by a team of experts in the field, this book introduces a rapidly developing area of preprocessing analysis known as kernelization. The authors provide an overview of basic methods and important results, with accessible explanations of the most recent advances in the area, such as meta-kernelization, representative sets, polynomial lower bounds, and lossy kernelization. The text is divided into four parts, which cover the different theoretical aspects of the area: upper bounds, meta-theorems, lower bounds, and beyond kernelization. The methods are demonstrated through extensive examples using a single data set. Written to be self-contained, the book only requires a basic background in algorithmics and will be of use to professionals, researchers and graduate students in theoretical computer science, optimization, combinatorics, and related fields.

Table of Contents:
1. What is a kernel?; Part I. Upper Bounds: 2. Warm up; 3. Inductive priorities; 4. Crown decomposition; 5. Expansion lemma; 6. Linear programming; 7. Hypertrees; 8. Sunflower lemma; 9. Modules; 10. Matroids; 11. Representative families; 12. Greedy packing; 13. Euler's formula; Part II. Meta Theorems: 14. Introduction to treewidth; 15. Bidimensionality and protrusions; 16. Surgery on graphs; Part III. Lower Bounds: 17. Framework; 18. Instance selectors; 19. Polynomial parameter transformation; 20. Polynomial lower bounds; 21. Extending distillation; Part IV. Beyond Kernelization: 22. Turing kernelization; 23. Lossy kernelization.

About the Author :
Fedor V. Fomin is Professor of Computer Science at the Universitetet i Bergen, Norway. He is known for his work in algorithms and graph theory. He has co-authored two books, Exact Exponential Algorithms (2010) and Parameterized Algorithms (2015), and received the EATCS Nerode prizes in 2015 and 2017 for his work on bidimensionality and Measure and Conquer. Daniel Lokshtanov is Professor of Informatics at the Universitetet i Bergen, Norway. His main research interests are in graph algorithms, parameterized algorithms, and complexity. He is a co-author of Parameterized Algorithms (2015) and is a recipient of the Meltzer prize, the Bergen Research Foundation young researcher grant, and an ERC starting grant on parameterized algorithms. Saket Saurabh is Professor of Theoretical Computer Science at the Institute of Mathematical Sciences, Chennai, and Professor of Computer Science at the Universitetet i Bergen, Norway. He has made important contributions to every aspect of parametrized complexity and kernelization, especially to general purpose results in kernelization and applications of extremal combinatorics in designing parameterized algorithms. He is a co-author of Parameterized Algorithms (2015). Meirav Zehavi is Assistant Professor of Computer Science at Ben-Gurion University. Her research interests lie primarily in the field of parameterized complexity. In her Ph.D. studies, she received three best student paper awards.

Review :
'Kernelization is one of the most important and most practical techniques coming from parameterized complexity. In parameterized complexity, kernelization is the technique of data reduction with a performance guarantee. From humble beginnings in the 1990's it has now blossomed into a deep and broad subject with important applications, and a well-developed theory. Time is right for a monograph on this subject. The authors are some of the leading lights in this area. This is an excellent and well-designed monograph, fully suitable for both graduate students and practitioners to bring them to the state of the art. The authors are to be congratulated for this fine book.' Rod Downey, Victoria University of Wellington 'Kernelization is an important technique in parameterized complexity theory, supplying in many cases efficient algorithms for preprocessing an input to a problem and transforming it to a smaller one. The book provides a comprehensive treatment of this active area, starting with the basic methods and covering the most recent developments. This is a beautiful manuscript written by four leading researchers in the area.' Noga Alon, Princeton University, New Jersey and Tel Aviv University 'This book will be of great interest to computer science students and researchers concerned with practical combinatorial optimization, offering the first comprehensive survey of the rapidly developing mathematical theory of pre-processing - a nearly universal algorithmic strategy when dealing with real-world datasets. Concrete open problems in the subject are nicely highlighted.' Michael Fellows, Universitetet i Bergen, Norway 'The study of kernelization is a relatively recent development in algorithm research. With mathematical rigor and giving the intuition behind the ideas, this book is an excellent and comprehensive introduction to this new field. It covers the entire spectrum of topics, from basic and advanced algorithmic techniques to lower bounds, and goes beyond these with meta-theorems and variations on the notion of kernelization. The book is suitable for students wanting to learn the field as well as experts, who would both benefit from the full coverage of topics.' Hans L. Bodlaender, Universiteit Utrecht 'The book is well written and provides a wealth of examples to illustrate concepts, while being succinct.' D. Papamichail, Choice 'The book does a good job in several ways: it can serve as the first textbook on this flourishing area of research; it is also very useful for self-study, as it contains quite a number of exercises, with further pointers to the literature. In addition, it gives quite a good overview of the present state-of-the-art and can therefore help researchers in the area to discover results that (s)he might have missed due to the speed in which the area has developed over the last decade.' Henning Fernau, MathSciNet 'This book studies the research area of kernelization, which consists of the techniques used for data reduction via pre-processing in order to speed up data analysis computations … the book explores very novel and complex ideas, it is well written with attention to detail and easy to follow. The book concludes with a useful list of relevant references.' Efstratios Rappos, zbMATH 'The book manages to present an incredible number of techniques, methods, and examples in its 528 pages. Each chapter ends with a bibliographic notes section, which often provides some small historical context for the material covered. It also points to more current results and papers although it does so very briefly. Together, this makes the textbook a valuable resource book to researchers.' Tim Jackman and Steve Homer, SIGACT News


Best Sellers


Product Details
  • ISBN-13: 9781107057760
  • Publisher: Cambridge University Press
  • Publisher Imprint: Cambridge University Press
  • Height: 235 mm
  • No of Pages: 528
  • Returnable: N
  • Spine Width: 31 mm
  • Weight: 880 gr
  • ISBN-10: 1107057760
  • Publisher Date: 10 Jan 2019
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Returnable: N
  • Sub Title: Theory of Parameterized Preprocessing
  • Width: 157 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Kernelization: Theory of Parameterized Preprocessing
Cambridge University Press -
Kernelization: Theory of Parameterized Preprocessing
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Kernelization: Theory of Parameterized Preprocessing

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!