High Performance Spark
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Databases > Data capture and analysis > High Performance Spark: Best Practices for Scaling and Optimizing Apache Spark
High Performance Spark: Best Practices for Scaling and Optimizing Apache Spark

High Performance Spark: Best Practices for Scaling and Optimizing Apache Spark


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Apache Spark is amazing when everything clicks. But if you haven't seen the performance improvements you expected or still don't feel confident enough to use Spark in production, this practical book is for you. Authors Holden Karau, Rachel Warren, and Anya Bida walk you through the secrets of the Spark code base, and demonstrate performance optimizations that will help your data pipelines run faster, scale to larger datasets, and avoid costly antipatterns. Ideal for data engineers, software engineers, data scientists, and system administrators, the second edition of High Performance Spark presents new use cases, code examples, and best practices for Spark 3.x and beyond. This book gives you a fresh perspective on this continually evolving framework and shows you how to work around bumps on your Spark and PySpark journey. With this book, you'll learn how to: Accelerate your ML workflows with integrations including PyTorch Handle key skew and take advantage of Spark's new dynamic partitioning Make your code reliable with scalable testing and validation techniques Make Spark high performance Deploy Spark on Kubernetes and similar environments Take advantage of GPU acceleration with RAPIDS and resource profiles Get your Spark jobs to run faster Use Spark to productionize exploratory data science projects Handle even larger datasets with Spark Gain faster insights by reducing pipeline running times

About the Author :
Holden Karau is transgender Canadian, and an active open source contributor. When not in San Francisco working as a software development engineer at Netflix, Holden talks internationally on Apache Spark and holds office hours at coffee shops at home and abroad. She is a Spark committer with frequent contributions, specializing in PySpark and Machine Learning. Prior to IBM she worked on a variety of distributed, search, and classification problems at Alpine, Databricks, Google, Foursquare, Amazon, and IBM. She graduated from the University of Waterloo with a Bachelor of Mathematics in Computer Science. Outside of software she enjoys playing with fire, welding, scooters, poutine, and dancing. For most of Adi's professional life, she dealt with data and machine learning. As a data practitioner, she developed algorithms to solve real-world problems using machine-learning techniques. As an engineer, she led the direction that brought the value of her hands-on machine learning experience into various Fortune 500 companies' products and services by building upon cutting-edge and emerging technologies. Adi has been working and contributing to the Apache Spark community since 2013 and taught Spark to thousands of students throughout the year. Adi is an official Databricks ambassador, the author of the successful book - Scaling Machine Learning with Spark, and a respected worldwide presenter. Rachel Warren is a data scientist and software engineer at Alpine Data Labs, where she uses Spark to address real world data processing challenges. She has experience working as an analyst both in industry and academia. She graduated with a degree in Computer Science from Wesleyan University in Connecticut.


Best Sellers


Product Details
  • ISBN-13: 9781098145859
  • Publisher: O'Reilly Media
  • Publisher Imprint: O'Reilly Media
  • Edition: Revised edition
  • Language: English
  • Returnable: Y
  • Width: 178 mm
  • ISBN-10: 1098145852
  • Publisher Date: 31 Jan 2026
  • Binding: Paperback
  • Height: 232 mm
  • No of Pages: 350
  • Sub Title: Best Practices for Scaling and Optimizing Apache Spark


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
High Performance Spark: Best Practices for Scaling and Optimizing Apache Spark
O'Reilly Media -
High Performance Spark: Best Practices for Scaling and Optimizing Apache Spark
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

High Performance Spark: Best Practices for Scaling and Optimizing Apache Spark

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!