Buy Reliable Machine Learning Book by Kranti Parisa
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer science > Artificial intelligence > Machine learning > Reliable Machine Learning: Applying SRE Principles to ML in Production
Reliable Machine Learning: Applying SRE Principles to ML in Production

Reliable Machine Learning: Applying SRE Principles to ML in Production


     0     
5
4
3
2
1



International Edition


X
About the Book

Whether you're part of a small startup or a planet-spanning megacorp, this practical book shows data scientists, SREs, and business owners how to run ML reliably, effectively, and accountably within your organization. You'll gain insight into everything from how to do model monitoring in production to how to run a well-tuned model development team in a product organization. By applying an SRE mindset to machine learning, authors and engineering professionals Cathy Chen, Kranti Parisa, Niall Richard Murphy, D. Sculley, Todd Underwood, and featured guests show you how to run an efficient ML system. Whether you want to increase revenue, optimize decision-making, solve problems, or understand and influence customer behavior, you'll learn how to perform day-to-day ML tasks while keeping the bigger picture in mind. You'll examine: What ML is: how it functions and what it relies on Conceptual frameworks for understanding how ML ""loops"" work Effective ""productionization,"" and how it can be made easily monitorable, deployable, and operable Why ML systems make production troubleshooting more difficult, and how to get around them How ML, product, and production teams can communicate effectively

"

About the Author :
Cathy Chen, CPCC, MA specializes in coaching tech leaders enabling development of their own skills in leading teams. She has held the role of technical program manager, product manager, and engineering manager. She has led teams in large tech companies and startups launching product features, internal tools, and operating large systems. Cathy has a BS in Electrical Engineering from UC Berkeley & MA in Organizational Psychology from Teachers College at Columbia University. Currently, Cathy lives with her partner in Pittsburgh, PA and works at Google in SRE. Niall Murphy has worked in Internet infrastructure since the mid-1990s, specializing in large online services. He has worked with all of the major cloud providers from their Dublin, Ireland offices, and most recently at Microsoft, where he was global head of Azure Site Reliability Engineering (SRE). His first exposure to machine learning came with managing the Ads ML teams in Google's Dublin office and working with Todd Underwood in Pittsburgh, though it has continued to fascinate him since. He is the instigator, co-author, and editor of the two Google SRE books, and he is probably one of the few people in the world to hold degrees in Computer Science, Mathematics, and Poetry Studies. He lives in Dublin with his wife and two children, and works on a startup involving ML in the SRE space. Kranti K. Parisa is currently the Vice President & Head of Product Engineering at Dialpad. His teams build large scale, cloud native real-time business communications & collaboration software with industry leading in-house AI/ML & Telephony technology. Before Dialpad, he has led teams that are responsible for search and personalization platforms, products and services at Apple. Kranti was a cofounder, CTO and technical advisor of multiple start-ups focusing on cloud computing, SaaS, and enterprise search. He has contributed to the Apache Lucene/Solr community and co-authored the book Apache Solr Enterprise Search Server. For his outstanding contributions to Search & Discovery, U.S. Government has recognized him as a Person of Extraordinary Ability (EB1A). D. Sculley is currently the CEO of Kaggle and GM of Third Party ML Ecosystems at Google, and previously has been a Director in the Google Brain Team and the lead of some of Google's most critical production machine learning pipelines. He has focused on issues of technical debt in machine learning, along with robustness and reliability of models and pipelines, and has led teams applying machine learning to problems as diverse as ad click through prediction and abuse prevention to protein design and scientific discovery. Additionally, he has helped to create Google's Machine Learning Crash Course, which has taught ML to millions of people worldwide. Todd Underwood is a Senior Director at Google and leads Machine Learning SRE. He is also Site Lead for Google's Pittsburgh office. ML SRE teams build and scale internal and external ML services, and are critical to almost every significant product at Google. Before working at Google, Todd held a variety of roles at Renesys (in charge of operations, security, and peering for Internet intelligence services) now part of Oracle's Cloud, and before that he was Chief Technology Officer of Oso Grande, an independent Internet service provider in New Mexico.


Best Sellers


Product Details
  • ISBN-13: 9781098106225
  • Publisher: O'Reilly Media
  • Publisher Imprint: O'Reilly Media
  • Height: 232 mm
  • No of Pages: 350
  • Returnable: 00
  • Width: 178 mm
  • ISBN-10: 1098106229
  • Publisher Date: 30 Sep 2022
  • Binding: Paperback
  • Language: English
  • Returnable: 00
  • Sub Title: Applying SRE Principles to ML in Production


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Reliable Machine Learning: Applying SRE Principles to ML in Production
O'Reilly Media -
Reliable Machine Learning: Applying SRE Principles to ML in Production
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Reliable Machine Learning: Applying SRE Principles to ML in Production

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!