Logic Synthesis for FPGA-Based Mealy Finite State Machines
Home > Science, Technology & Agriculture > Electronics and communications engineering > Electronics engineering > Electronics: circuits and components > Logic Synthesis for FPGA-Based Mealy Finite State Machines: Structural Decomposition in Logic Design
Logic Synthesis for FPGA-Based Mealy Finite State Machines: Structural Decomposition in Logic Design

Logic Synthesis for FPGA-Based Mealy Finite State Machines: Structural Decomposition in Logic Design


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This book is devoted to the logic synthesis of field programmable gate array (FPGA)-based circuits of Mealy finite state machines (FSM). Three new methods of state assignment are proposed, which allows obtaining FSM circuits required minimum amount of internal chip resources. Logic Synthesis for FPGA-Based Mealy Finite State Machines: Structural Decomposition in Logic Design contains several original synthesis and optimization methods based on the structural decomposition of FPGA-based FSM circuits developed by the authors. To optimize FSM circuits, the authors introduce the use of three methods of state assignment: twofold, extended, and composite. These methods allow for the creation of two- or three-level architectures of FSM circuits. The authors also demonstrate how the proposed methods, FSM architectures and synthesis methods can replace known solutions based on either functional decomposition or classical methods of structural decomposition. The authors also show how these architectures have regular systems of interconnections and demonstrate positive features compared to methods based on functional decomposition, including producing circuits with fewer elements that are faster and consume less power than their counterparts. The book includes experimental results proving the efficiency of the proposed solutions and compares the numbers in Look-up Tables (LUTs), showing the performance (maximum operating frequency) and power consumption for various methods of state assignment. The audience for this book is students, researchers, and engineers specializing in computer science/ engineering, electronics, and telecommunications. It will be especially useful for engineers working within the scope of algorithms, hardware-based software accelerators and control units, and systems based on the use of FPGAs.

Table of Contents:
Chapter 1- Designing FPGA-based FSMs Chapter 2- Methods of state assignment Chapter 3- Reducing power consumption in FPGA-based FSMs Chapter 4- Structural decomposition in FSM design Chapter 5- Logic synthesis based on encoding of fields of compatible states Chapter 6- Optimizing FCS-based FSMs Chapter 7- Synthesis of FSMs with composite state codes Chapter 8- Reducing LUT count in FSMs with transformation of objects

About the Author :
Alexander Barkalov received his M.Sc. degree in Computer Engineering from the Donetsk Politechnical Institute (currently Donetsk National Technical University), Ukraine, in 1976, and his Ph.D. degree in Computer Science from the Leningrad Institute of Precise Mechanics and Optics, Russia, in 1983. In 1995 he received Doctor of Technical Sciences degree in Computer Science from Institute of Cybernetics named after V.M. Glushkov (Kiev, Ukraine). He has been a Professor (since 1996) at the Institute of Computers, Donetsk National Technical University. From 2003 he is a Professor of Computer Engineering at the Institute of Informatics and Electronics, University of Zielona Góra, Poland, and he still is a Professor at the Institute of Computers, Donetsk National Technical University. His current research interests include theory of digital automata, especially the methods of synthesis and optimization of control units implemented with field-programmable logic devices. Larysa Titarenko (member of HiPEAC) received the M.Sc. (1993), PhD (1996) and Doctor of Technical Sciences (2005) degree in Telecommunications from Kharkov National University of Radioelectronics, Ukraine. Since 2007 she has been a Professor of Telecommunications at the Institute of Informatics and Electronics, University of Zielona Góra, Poland, and she is still a Professor of telecommunications at the Institute of Infocommunication Engineering, Kharkov National University of Radioelectronics, Ukraine. Her current research interests include theory of telecommunication systems, theory of antennas and theory of digital automata and its applications. Kazimierz Krzywicki obtained PhD in computer science from University of Zielona Gora in 2019. Since 2010, he founded and heads the KGK Pro company, which creates software and hardware solutions. The main areas of activity are embedded systems and Internet of Things – especially animal tracking devices. The company was the first in the world to introduce a bird tracking device equipped with a camera. For over 12 years he has been an expert witness and computer forensics investigator. He is also a member of PTI (Polish Information Processing Society). His research interests include design and implementation of distributed embedded systems and hardware synthesis for reprogrammable devices.


Best Sellers


Product Details
  • ISBN-13: 9781040263846
  • Publisher: Taylor & Francis Ltd
  • Publisher Imprint: CRC Press
  • Language: English
  • ISBN-10: 1040263844
  • Publisher Date: 04 Dec 2024
  • Binding: Digital (delivered electronically)
  • Sub Title: Structural Decomposition in Logic Design


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Logic Synthesis for FPGA-Based Mealy Finite State Machines: Structural Decomposition in Logic Design
Taylor & Francis Ltd -
Logic Synthesis for FPGA-Based Mealy Finite State Machines: Structural Decomposition in Logic Design
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Logic Synthesis for FPGA-Based Mealy Finite State Machines: Structural Decomposition in Logic Design

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!