Non-Newtonian Sequence Spaces with Applications
Home > Mathematics and Science Textbooks > Mathematics > Calculus and mathematical analysis > Calculus > Non-Newtonian Sequence Spaces with Applications: (Chapman & Hall/CRC Monographs and Research Notes in Mathematics)
Non-Newtonian Sequence Spaces with Applications: (Chapman & Hall/CRC Monographs and Research Notes in Mathematics)

Non-Newtonian Sequence Spaces with Applications: (Chapman & Hall/CRC Monographs and Research Notes in Mathematics)


     0     
5
4
3
2
1



International Edition


About the Book

Non-Newtonian Sequence Spaces with Applications presents an alternative to the usual calculus based on multiplication instead of addition. This book is intended for graduate students and researchers with a special interest in non-Newtonian calculus, its applications, and related topics. Key features: Valuable material for postgraduate researchers studying non-Newtonian calculus Suitable as supplementary reading to a Computational Physics course

Table of Contents:
Preface vii Acknowledgements ix List of Abbreviations and Symbols x 1 Sequence and Function Spaces over the Non-newtonian ... 1 1.1 Some Basic Results on the Spaces of Sequences ... . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Preliminaries, background and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Geometric complex field and related properties . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.3 Geometric metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.4 Convergence and completeness in (GC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1.5 Sequence spaces over C(G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2 Some Results on Sequence Spaces with ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2.1 Preliminaries, backround and notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.2.2 Non-newtonian real field and related properties . . . . . . . . . . . . . . . . . . . . . . . 13 1.2.3 Non-newtonian metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2.4 Convergence and completeness in (NC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.3 Sequence Spaces Over the Non-newtonian ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.4 Certain Non-newtonian Complex Sequence Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.4.1 Preliminaries, background and notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.6 Some Sequence Spaces and Matrix Transformations in ... . . . . . . . . . . . . . . . . . . . . . . 29 1.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.6.2 Preliminaries, background and notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.6.3 Characterizations of some matrix classes . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.6.4 Multiplicative dual summability methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2 Application of Geometric Calculus in Numerical Analysis and Difference Sequence Spaces 39 2.1 Introduction and Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.2 α-generator and Geometric Real Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.2.1 Some useful relations between geometric operations and ordinary arithmetic operations . 40 2.3 Geometric Sequence Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.4 Dual Spaces of ℓG ∞(□G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.4.1 Geometric form of Abel’s partial summation formula . . . . . . . . . . . . . . . . . . . . 46 2.5 α-, β- and γ-duals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.6 Some Applications of Geometric Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.6.1 Geometric Newton-Gregory backward interpolation formula . . . . . . . . . . . . . . . . 53 2.6.2 Advantages of geometric interpolation formulae over ordinary interpolation formulae . . 55 2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3 Bigeometric Integral Calculus 56 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.2 Geometric Arithmetic and Geometric Real Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.3 Definitions and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.3.1 G-derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.3.2 Some standard G-derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 iv 3.4 G-Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.4.1 Some standard G-integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.4.2 Integration by transforming the function to the form ex f′(x) f(x) . . . . . . . . . . . . . . . . 58 3.4.3 Integration by the relation between G-integral and ordinary integral . . . . . . . . . . . 58 3.4.4 Properties of G-integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.5 Definite Bigeometric Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.5.1 Properties of definite G-integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.5.2 Definite bigeometric integral as a limit of geometric sum . . . . . . . . . . . . . . . . . . 63 3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4 Bigeometric Calculus and Its Applications 67 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.1.1 Some useful relations between geometric operations and ordinary arithmetic operations . 67 4.2 Definitions and Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.2.1 Geometric binomial formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.2.2 Geometric real number line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.2.3 Geometric coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.2.4 Geometric factorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.2.5 Generalized geometric forward difference operator □n G . . . . . . . . . . . . . . . . . . . . 69 4.2.6 Generalized Geometric Backward Difference Operator ∇n G . . . . . . . . . . . . . . . . . 69 4.3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.3.1 Geometric Pythagorean triplets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.3.2 Geometric trigonometric ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.3.3 Relation between geometric trigonometry and ordinary trigonometry . . . . . . . . . . . 71 4.3.4 Geometric trigonometric identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.3.5 G-limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.3.6 G-continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.4 Basic Properties of G-Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.4.1 G-derivative and its interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.4.2 Relation between G-derivative and ordinary derivative . . . . . . . . . . . . . . . . . . . 77 4.4.3 G-derivatives of some standard functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.4.4 Geometric Taylor’s series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.5 Some Applications of G-Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.5.1 Expansion of some useful functions in Taylor’s product . . . . . . . . . . . . . . . . . . . 83 4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5 Solution of Bigeometric-Differential Equations by Numerical Methods 87 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.2 Basic Definitions and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.2.1 Geometric factorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.2.2 Geometric Newton-Gregory formula for forward interpolation . . . . . . . . . . . . . . . 88 5.2.3 Geometric Newton-Gregory formula for backward interpolation . . . . . . . . . . . . . . 88 5.2.4 G-derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.2.5 Some standard G-derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.2.6 Geometric Taylor’s series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.3 Numerical Methods and Solution of G-Differential Equations . . . . . . . . . . . . . . . . . . . . 89 5.3.1 G-Euler’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.3.2 Taylor’s G-series method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.3.3 G-Runge-Kutta method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.3.4 G-Runge-Kutta method of order four . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6 Certain Spaces of Functions over the Set of Non-Newtonian Complex Numbers 100 6.1 Preliminaries, Backround and Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.2 The Set of ∗-Complex Numbers and ∗-Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.3 Continuous Function Space over the Field C∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 6.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 7 Multiplicative Type Complex Calculus 110 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 7.2 Definitions, Methods, and Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 7.2.1 A multiplicative group, an additive group, and an isomorphism . . . . . . . . . . . . . . 111 7.2.2 Remoteness of two values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 7.2.3 Change rate of a function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 7.2.4 Derivative and integral operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 7.2.5 Euler’s simple method in differential equation solving . . . . . . . . . . . . . . . . . . . . 117 7.2.6 Some fundamental theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 8 Function Sequences and Series ... 124 8.1 Introduction and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 8.2 ∗-Function Sequences and Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 8.2.1 ∗-function sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 8.2.2 ∗-function series and consequences of ∗-uniform convergence . . . . . . . . . . . . . . . . 129 8.2.3 ∗-uniform convergence and ∗-continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 8.2.4 ∗-uniform convergence and ∗-integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 8.2.5 ∗-Uniform Convergence and ∗-Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 9 On Non-newtonian Power Series and its Applications 139 9.1 Introduction and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 9.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 9.2.1 ∗-Dirichlet’s and ∗-Abel’s tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 9.2.2 ∗-power series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 Bibliography 150 Index 153

About the Author :
Feyzi Başar is a Professor Emeritus since July 2016, at Inönü University, Türkiye. He received his PhD from Ankara University, Türkiye, in 1986. He has published four e-books for graduate students and researchers, and more than 160 scientific papers in the field of summability theory, sequence spaces, FK-spaces, Schauder bases, dual spaces, matrix transformations, spectrum of certain linear operators represented by a triangle matrix over some sequence space, the α-, β-, and γ-duals, and some topological properties of the domains of some two- and four-dimensional triangles in certain spaces of single and double sequences, sets of the sequences of fuzzy numbers, and multiplicative calculus. He has guided 17 master and 10 PhD students and served as a referee for 148 international scientific journals. He is the member of editorial board of 21 scientific journals. Feyzi Başar is also a member of scientific committee of 17 mathematics conference. He gave talks at 14 different universities as invited speaker and participated more than 70 mathematics symposium with a paper. Bipan Hazarika is Professor in the Department of Mathematics at Gauhati University, Guwahati, Assam. He worked at Rajiv Gandhi University, Rono Hills, Doimukh, Arunachal Pradesh, India from 2005 to 2017. He was Professor at Rajiv Gandhi University up to August 10, 2017. He received his PhD from Gauhati University, Guwahati, India. His main research interests include the field of sequences spaces, summability theory, applications fixed point theory, fuzzy analysis, and function spaces of non-absolute integrable functions. He has published over 200 research papers in several international journals. He is a regular reviewer of more than 50 different journals published from Springer, Elsevier, Taylor and Francis, Wiley, IOS Press, World Scientific, American Mathematical Society, and De Gruyter. He has published books on Differential Equations, Differential Calculus, and Integral Calculus. He has edited books in CRC press on Sequence Spaces, Advances in Mathematical Analysis and its Applications, Dynamic Equations on Time Scales and Applications, and in Springer Nature a book on Fractional Differential Equations and Fixed Point Theory, Approximation Theory, Sequence Spaces and Applications (Industrial and Applied Mathematics), Advances in Functional Analysis and Fixed-Point Theory: An Interdisciplinary Approach (Industrial and Applied Mathematics). In 2022, 2023, and 2024, he was listed among the world’s top 2% scientists by Stanford University. He is an editorial board member of more than five International journals and a Guest Editor of the special issue Sequence Spaces, Function Spaces and Approximation Theory, Journal of Function Spaces.


Best Sellers


Product Details
  • ISBN-13: 9781032988900
  • Publisher: Taylor & Francis Ltd
  • Publisher Imprint: Chapman & Hall/CRC
  • Height: 254 mm
  • No of Pages: 182
  • Weight: 530 gr
  • ISBN-10: 1032988908
  • Publisher Date: 12 May 2025
  • Binding: Hardback
  • Language: English
  • Series Title: Chapman & Hall/CRC Monographs and Research Notes in Mathematics
  • Width: 178 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Non-Newtonian Sequence Spaces with Applications: (Chapman & Hall/CRC Monographs and Research Notes in Mathematics)
Taylor & Francis Ltd -
Non-Newtonian Sequence Spaces with Applications: (Chapman & Hall/CRC Monographs and Research Notes in Mathematics)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Non-Newtonian Sequence Spaces with Applications: (Chapman & Hall/CRC Monographs and Research Notes in Mathematics)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!