Data Science and Machine Learning
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Mathematics > Probability and statistics > Data Science and Machine Learning: Mathematical and Statistical Methods, Second Edition(Chapman & Hall/CRC Machine Learning & Pattern Recognition)
Data Science and Machine Learning: Mathematical and Statistical Methods, Second Edition(Chapman & Hall/CRC Machine Learning & Pattern Recognition)

Data Science and Machine Learning: Mathematical and Statistical Methods, Second Edition(Chapman & Hall/CRC Machine Learning & Pattern Recognition)


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Praise for the first edition: “In nine succinct but information-packed chapters, the authors provide a logically structured and robust introduction to the mathematical and statistical methods underpinning the still-evolving field of AI and data science.” - Joacim Rocklöv and Albert A. Gayle, International Journal of Epidemiology, Volume 49, Issue 6 “This book organizes the algorithms clearly and cleverly. The way the Python code was written follows the algorithm closely—very useful for readers who wish to understand the rationale and flow of the background knowledge.” - Yin-Ju Lai and Chuhsing Kate Hsiao, Biometrics, Volume 77, Issue 4 The purpose of Data Science and Machine Learning: Mathematical and Statistical Methods is to provide an accessible, yet comprehensive textbook intended for students interested in gaining a better understanding of the mathematics and statistics that underpin the rich variety of ideas and machine learning algorithms in data science. New in the Second Edition This expanded edition provides updates across key areas of statistical learning: Monte Carlo Methods: A new section introducing regenerative rejection sampling - a simpler alternative to MCMC. Unsupervised Learning: Inclusion of two multidimensional diffusion kernel density estimators, as well as the bandwidth perturbation matching method for the optimal data-driven bandwidth selection. Regression: New automatic bandwidth selection for local linear regression. Feature Selection and Shrinkage: A new chapter introducing the klimax method for model selection in high-dimensions. Reinforcement Learning: A new chapter on contemporary topics such as policy iteration, temporal difference learning, and policy gradient methods, all complete with Python code. Appendices: Expanded treatment of linear algebra, functional analysis, and optimization that includes the coordinate-descent method and the novel Majorization–Minimization method for constrained optimization. Key Features: Focuses on mathematical understanding. Presentation is self-contained, accessible, and comprehensive. Extensive list of exercises and worked-out examples. Many concrete algorithms with Python code. Full color throughout and extensive indexing. A single-counter consecutive numbering of all theorems, definitions, equations, etc., for easier text searches.

Table of Contents:
Preface Notation 1. Importing, Summarizing, and Visualizing Data 2. Statistical Learning 3. Monte Carlo Methods 4. Unsupervised Learning 5. Regression 6. Feature Selection and Shrinkage 7. Reproducing Kernel Methods 8. Classification 9. Decision Trees and Ensemble Methods 10. Deep Learning 11. Reinforcement Learning Appendix A. Linear Algebra Appendix B. Functional Analysis Appendix C. Multivariate Differentiation and Optimization Appendix D. Probability and Statistics Appendix E. Python Primer Bibliography Index

About the Author :
Zdravko I. Botev, PhD, is the pioneer of several modern statistical methodologies, including the diffusion kernel density estimator, the generalized splitting method for rare-event simulation, the bandwidth perturbation matching method, the regenerative rejection sampling method, and the klimax method for feature selection. His contributions to computational statistics and data science have been recognized with honours such as the Christopher Heyde Medal from the Australian Academy of Science and the Gavin Brown Prize from the Australian Mathematical Society. Dirk P. Kroese, PhD, is an Emeritus Professor in Mathematics and Statistics at the University of Queensland. He is known for his significant contributions to the fields of applied probability, mathematical statistics, machine learning, and Monte Carlo methods. He has published over 140 articles and 7 books. He is a pioneer of the well-known Cross-Entropy (CE) method, which is being used around the world to help solve difficult estimation and optimization problems in science, engineering, and finance. Thomas Taimre, PhD, is a Senior Lecturer of Mathematics and Statistics at The University of Queensland. His research interests range from applied probability and Monte Carlo methods to applied physics and the remarkably universal self-mixing effect in lasers. He has published over 100 articles, holds a patent, and is the coauthor of Handbook of Monte Carlo Methods (Wiley).


Best Sellers


Product Details
  • ISBN-13: 9781032488684
  • Publisher: Taylor & Francis Ltd
  • Publisher Imprint: Chapman & Hall/CRC
  • Height: 254 mm
  • No of Pages: 730
  • Sub Title: Mathematical and Statistical Methods, Second Edition
  • Width: 178 mm
  • ISBN-10: 1032488689
  • Publisher Date: 20 Nov 2025
  • Binding: Hardback
  • Language: English
  • Series Title: Chapman & Hall/CRC Machine Learning & Pattern Recognition
  • Weight: 453 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Data Science and Machine Learning: Mathematical and Statistical Methods, Second Edition(Chapman & Hall/CRC Machine Learning & Pattern Recognition)
Taylor & Francis Ltd -
Data Science and Machine Learning: Mathematical and Statistical Methods, Second Edition(Chapman & Hall/CRC Machine Learning & Pattern Recognition)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Data Science and Machine Learning: Mathematical and Statistical Methods, Second Edition(Chapman & Hall/CRC Machine Learning & Pattern Recognition)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!