Optimal Event-Triggered Control Using Adaptive Dynamic Programming
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Electronics and communications engineering > Electronics engineering > Automatic control engineering > Optimal Event-Triggered Control Using Adaptive Dynamic Programming: (Automation and Control Engineering)
Optimal Event-Triggered Control Using Adaptive Dynamic Programming: (Automation and Control Engineering)

Optimal Event-Triggered Control Using Adaptive Dynamic Programming: (Automation and Control Engineering)


     0     
5
4
3
2
1



Available


X
About the Book

Optimal Event-triggered Control using Adaptive Dynamic Programming discusses event triggered controller design which includes optimal control and event sampling design for linear and nonlinear dynamic systems including networked control systems (NCS) when the system dynamics are both known and uncertain. The NCS are a first step to realize cyber-physical systems (CPS) or industry 4.0 vision. The authors apply several powerful modern control techniques to the design of event-triggered controllers and derive event-trigger condition and demonstrate closed-loop stability. Detailed derivations, rigorous stability proofs, computer simulation examples, and downloadable MATLAB® codes are included for each case. The book begins by providing background on linear and nonlinear systems, NCS, networked imperfections, distributed systems, adaptive dynamic programming and optimal control, stability theory, and optimal adaptive event-triggered controller design in continuous-time and discrete-time for linear, nonlinear and distributed systems. It lays the foundation for reinforcement learning-based optimal adaptive controller use for infinite horizons. The text then: Introduces event triggered control of linear and nonlinear systems, describing the design of adaptive controllers for them Presents neural network-based optimal adaptive control and game theoretic formulation of linear and nonlinear systems enclosed by a communication network Addresses the stochastic optimal control of linear and nonlinear NCS by using neuro dynamic programming Explores optimal adaptive design for nonlinear two-player zero-sum games under communication constraints to solve optimal policy and event trigger condition Treats an event-sampled distributed linear and nonlinear systems to minimize transmission of state and control signals within the feedback loop via the communication network Covers several examples along the way and provides applications of event triggered control of robot manipulators, UAV and distributed joint optimal network scheduling and control design for wireless NCS/CPS in order to realize industry 4.0 vision An ideal textbook for senior undergraduate students, graduate students, university researchers, and practicing engineers, Optimal Event Triggered Control Design using Adaptive Dynamic Programming instills a solid understanding of neural network-based optimal controllers under event-sampling and how to build them so as to attain CPS or Industry 4.0 vision.

Table of Contents:
1. Background and Introduction to Event-triggered Control 2. Adaptive Dynamic Programming and Optimal Control 3 Linear Discrete-time and Networked Control Systems 4. Nonlinear Continuous-time Systems 5. Co-optimization of Event-triggered Sampling and Control 6. Large-scale Linear Interconnected Systems 7. Large-scale Nonlinear Interconnected Systems 8. Exploration and Hybrid Learning for Nonlinear Interconnected Systems 9. Event-Triggered Control Applications

About the Author :
Dr. Sarangapani Jagannathan is a Curator’s Distinguished Professor and Rutledge-Emerson chair of Electrical and Computer Engineering at the Missouri University of Science and Technology (former University of Missouri-Rolla). He has a joint Professor appointment in the Department of Computer Science. He served as a Director for the NSF Industry/University Cooperative Research Center on Intelligent Maintenance Systems for 13 years. His research interests include learning, adaptation and control, secure human-cyber-physical systems, prognostics, and autonomous systems/robotics. Prior to his Missouri S&T appointment, he served as a faculty at University of Texas at San Antonio and as a staff engineer at Caterpillar, Peoria. He has coauthored over 500 refereed IEEE Transaction/journal and conference articles, written 18 book chapters, authored/co-edited 6 books, received 21 US patents and one patent defense publication. He delivered around 30 plenary and keynote talks in various international conferences and supervised to graduation 33 doctoral and 31 M.S thesis students. He was a co-editor for the IET book series on control from 2010 until 2013 and served on many editorial boards including IEEE Systems, Man and Cybernetics, and has been on organizing committees of several IEEE Conferences. He is currently an associate editor for IEEE Transactions on Neural Networks and Learning Systems and others. He received many awards including the 2020 Best Associate Editor Award, 2018 IEEE CSS Transition to Practice Award, 2007 Boeing Pride Achievement Award, 2001 Caterpillar Research Excellence Award, 2021 University of Missouri Presidential Award for sustained career excellence, 2001 University of Texas Presidential Award for early career excellence, and 2000 NSF Career Award. He also received several faculty excellence and teaching excellence and commendation awards. As part of his NSF I/UCRC, he transitioned many technologies and software products to industrial entities saving millions of dollars. He is a Fellow of the IEEE, National Academy of Inventors, and Institute of Measurement and Control, UK, Institution of Engineering and Technology (IET), UK and Asia-Pacific Artificial Intelligence Association. Dr. Vignesh Narayanan is an Assistant Professor in the AI institute and the Department of Computer Science and Engineering at University of South Carolina (USC), Columbia. He is also affiliated with the Carolina Autism and Neurodevelopment research center at USC. His research interests include dynamical systems and networks, artificial intelligence, data science, learning theory, and computational neuroscience. He received his B.Tech. Electrical and electronics engineering and M. Tech. Electrical engineering degrees from SASTRA University, Thanjavur, and the National Institute of Technology, Kurukshetra, India, respectively, in 2012 and 2014, and his Ph.D. degree from Missouri University of Science and Technology, Rolla, MO in 2017. He was a post-doctoral research associate at Washington University in St. Louis, before joining the AI institute of USC. Avimanyu Sahoo received his Ph.D. in Electrical Engineering from Missouri University of Science and Technology, Rolla, MO, USA, in 2015 and a Master of Technology (MTech) from the Indian Institute of Technology (BHU), Varanasi, India, in 2011. He is currently an Assistant Professor in the Electrical and Computer Engineering Department at the University of Alabama in Huntsville (UAH), AL. Before joining UAH, Dr. Sahoo was an Associate Professor in the Division of Engineering Technology at Oklahoma State University, Stillwater, OK. Dr. Sahoo’s research interests include learning-based control and its applications in lithium-ion battery pack modeling, diagnostics, prognostics, cyber-physical systems (CPS), and electric machinery health monitoring. Currently, his research focuses on developing intelligent battery management systems (BMS) for lithium-ion battery packs used onboard electric vehicles, computation, and communication-efficient distributed intelligent control schemes for cyber-physical systems using approximate dynamic programming, reinforcement learning, and distributed adaptive state estimation. He has published over 45 journal and conference articles, including IEEE Transactions on Neural Networks and Learning Systems, Cybernetics, and Industrial Electronics. He is also an Associate Editor in IEEE Transactions on Neural Networks and Learning Systems and Frontiers in Control Engineering: Nonlinear Control.


Best Sellers


Product Details
  • ISBN-13: 9781032468655
  • Publisher: Taylor & Francis Ltd
  • Publisher Imprint: CRC Press
  • Height: 254 mm
  • No of Pages: 333
  • Weight: 453 gr
  • ISBN-10: 1032468653
  • Publisher Date: 21 Jun 2024
  • Binding: Hardback
  • Language: English
  • Series Title: Automation and Control Engineering
  • Width: 178 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Optimal Event-Triggered Control Using Adaptive Dynamic Programming: (Automation and Control Engineering)
Taylor & Francis Ltd -
Optimal Event-Triggered Control Using Adaptive Dynamic Programming: (Automation and Control Engineering)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Optimal Event-Triggered Control Using Adaptive Dynamic Programming: (Automation and Control Engineering)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!