Buy Energy Storage and Conversion Materials - Bookswagon
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Energy technology and engineering > Energy, power generation, distribution and storage > Energy Storage and Conversion Materials: Properties, Methods, and Applications
Energy Storage and Conversion Materials: Properties, Methods, and Applications

Energy Storage and Conversion Materials: Properties, Methods, and Applications


     0     
5
4
3
2
1



International Edition


X
About the Book

This book explores the fundamental properties of a wide range of energy storage and conversion materials, covering mainstream theoretical and experimental studies and their applications in green energy. It presents a thorough investigation of diverse physical, chemical, and material properties of rechargeable batteries, supercapacitors, solar cells, and fuel cells, covering the development of theoretical simulations, machine learning, high-resolution experimental measurements, and excellent device performance. Covers potential energy storage (rechargeable batteries and supercapacitors) and energy conversion (solar cells and fuel cells) materials Develops theoretical predictions and experimental observations under a unified quasi-particle framework Illustrates up-to-date calculation results and experimental measurements Describes successful synthesis, fabrication, and measurements, as well as potential applications and near-future challenges Promoting a deep understanding of basic science, application engineering, and commercial products, this work is appropriate for senior graduate students and researchers in materials, chemical, and energy engineering and related disciplines.

Table of Contents:
1. Introduction, 2. Molecular Dynamics Simulation of Amorphous Silicon Anode in Li-Ion Batteries, 3. Rich Intercalations in Graphite Magnesium Compounds, 4. Na-Intercalation Compounds and Na-Ion Batteries, 5. Electronic Properties of LiLaTiO4 Compound, 6. Electronic Properties of Li2S-Si Heterojunction, 7. Electronic and Magnetic Properties of LiMnO2 Compound, 8. Surface Property of High-Voltage Cathode LiNiPO4 in Lithium-Ion Batteries: A First-Principles Study, 9. Introductory to Machine Learning Method and Its Applications in Li-Ion Batteries, 10. SnOx (x = 0,1,2) and Mo Doped SnO2 Nanocomposite as Possible Anode Materials in Lithium-Ion Battery, 11. Polymer Electrolytes Based on Ionic Liquid and Poly(ethylene glycol) via in-situ Photopolymerization of Lithium-Ion Batteries, 12. Synthesis of Multiporous Carbons with Biomaterials for Applications in Supercapacitors and Capacitive Deionization, 13. Low-Dimensional Heterostructure-Based Solar Cells, 14. Towards High-Performance Indoor Dye-Sensitized Photovoltaics: A Review of Electrodes and Electrolytes Development, 15. Progress and Prospects of Intermediate-Temperature Solid Oxide Fuel Cells, 16. Concluding Remarks, 17. Energy Resources and Challenges, 18. Problems under Classical and Quantum Pictures

About the Author :
Ngoc Thanh Thuy Tran obtained her Ph.D. in Physics in 2017 from the National Cheng Kung University (NCKU), Taiwan. Afterward, she began to work as a postdoctoral researcher and then an assistant researcher at Hierarchical Green-Energy Materials (Hi-GEM) Research Center, NCKU. Her scientific interest is focused on the fundamental (electronic, magnetic, and thermodynamic) properties of 2D materials and rechargeable battery materials by means of the first-principles calculations. Jeng-Shiung Jan is a professor in the Department of Chemical Engineering, NCKU, Taiwan. He received his PhD in Chemical Engineering in 2006 from Texas A&M University and conducted postdoctoral research at Georgia Institute of Technology. His current research focuses on studying the synthesis of functional polymers and nanomaterials. He received several awards, including Outstanding Professor in Academic Research from LCY Education Foundation and Lai Zaide Professor Award. Wen-Dung Hsu is a professor in the Department of Materials Science and Engineering, NCKU, Taiwan. His expertise is utilizing computational materials science methods including first-principle calculations, molecular dynamics simulations, Monte-Carlo methods, and finite-element methods to study materials issues. His research interests are mechanical properties of materials from atomic to macro scale, lithium-ion battery, solid-oxide fuel cell, ferroelectrics, solid catalyst design for biodiesel, and processing design for single-crystal growth. Ming-Fa Lin is a distinguished professor in the Department of Physics, NCKU, Taiwan. He received his PhD in physics in 1993 from the National Tsing-Hua University, Taiwan. His main scientific interests focus on essential properties of carbon-related materials and low-dimensional systems. He is a member of American Physical Society, American Chemical Society, and the Physical Society of Republic of China (Taiwan). Jow-Lay Huang is working as a chair professor in the Department of Materials Science and Engineering, NCKU, Taiwan. He is the director of the Hierarchical Green-Energy Materials (Hi-GEM) Research Center, NCKU. He received his PhD in Materials Science and Engineering in 1983 from University of Utah. His research interest includes the fabrication, development and application of ceramic nanocomposites, piezo-phototronic thin films for photodetector devices, piezoelectric thin films for high frequency devices, metal oxide/graphene and SiCx nanocomposites as anode materials for lithium-ion battery, and 2D nanocrystal materials for photoelectrochemical application.


Best Sellers


Product Details
  • ISBN-13: 9781032434216
  • Publisher: Taylor & Francis Ltd
  • Publisher Imprint: CRC Press
  • Height: 234 mm
  • No of Pages: 339
  • Weight: 730 gr
  • ISBN-10: 103243421X
  • Publisher Date: 03 May 2023
  • Binding: Hardback
  • Language: English
  • Sub Title: Properties, Methods, and Applications
  • Width: 156 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Energy Storage and Conversion Materials: Properties, Methods, and Applications
Taylor & Francis Ltd -
Energy Storage and Conversion Materials: Properties, Methods, and Applications
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Energy Storage and Conversion Materials: Properties, Methods, and Applications

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!