Robust Formation Control for Multiple Unmanned Aerial Vehicles
Home > Science, Technology & Agriculture > Transport technology and trades > Aerospace and aviation technology > Robust Formation Control for Multiple Unmanned Aerial Vehicles: (Automation and Control Engineering)
Robust Formation Control for Multiple Unmanned Aerial Vehicles: (Automation and Control Engineering)

Robust Formation Control for Multiple Unmanned Aerial Vehicles: (Automation and Control Engineering)


     0     
5
4
3
2
1



International Edition


X
About the Book

This book is based on the authors’ recent research results on formation control problems, including time-varying formation, communication delays, fault-tolerant formation for multiple UAV systems with highly nonlinear and coupled, parameter uncertainties, and external disturbances. Differentiating from existing works, this book presents a robust optimal formation approach to designing distributed cooperative control laws for a group of UAVs, based on the linear quadratic regulator control method and the robust compensation theory. The proposed control method is composed of two parts: the nominal part to achieve desired tracking performance and the robust compensation part to restrain the influence of highly nonlinear and strongly coupled parameter uncertainties, and external disturbances on the global closed-loop control system. Furthermore, this book gives proof of their robust properties. The influence of communication delays and actuator fault tolerance can be restrained by the proposed robust formation control protocol, and the formation tracking errors can converge into a neighborhood of the origin bounded by a given constant in a finite time. Moreover, the book provides details about the practical application of the proposed method to design formation control systems for multiple quadrotors and tail-sitters. Additional features include a robust control method that is proposed to address the formation control problem for UAVs and theoretical and experimental research for the cooperative flight of the quadrotor UAV group and the tail-sitter UAV group. Robust Formation Control for Multiple Unmanned Aerial Vehicles is suitable for graduate students, researchers, and engineers in the system and control community, especially those engaged in the areas of robust control, UAV swarming, and multi-agent systems.

Table of Contents:
1. Introduction and Background 2. Robust Formation Control for Multiple Quadrotors with Nonlinearities 3. Robust Formation Trajectory Tracking Control for Multiple Quadrotors with Communication Delays 4. Robust Formation Tracking Control for Multiple Quadrotors Subject to Switching Topologies 5. Robust Time-Varying Formation Control for Tail-Sitters in Flight Mode Transitions 6. Robust Fault-Tolerant Formation Control for Tail-Sitters in Aggressive Flight Mode Transitions Bibliography

About the Author :
Hao Liu received the B.E. degree in control science and engineering from the Northwestern Polytechnical University, Xi'an, China, in 2008, the Ph.D. degree in automatic control from the Tsinghua University, Beijing, China, in 2013. In 2012, he was a visiting student in the Research School of Engineering, Australian National University. From 2013 to 2020, he has been with the School of Astronautics, Beihang University, Beijing, China, where he is currently an Associate Professor. Since 2020, he has been with the Institute of Artificial Intelligence, Beihang University, Beijing, China. From 2017 to 2018, he was a visiting scholar at the University of Texas at Arlington Research Institute, Fort Worth, USA. He received the best paper award on IEEE ICCA 2018. His research interests include formation control, reinforcement learning, robust control, nonlinear control, unmanned aerial vehicles, unmanned underwater vehicles, and multi-agent systems. He serves as an associate editor of Transactions of the Institute of Measurement and Control, and Advanced Control for Applications: Engineering and Industrial Systems. Deyuan Liu received the B.E. degree in automation from the Beijing University of Chemical Technology, Beijing, China, in 2015, the Ph.D. degree in flight vehicle design from the School of Astronautics, Beihang University, Beijing, China, in 2021. He is currently a Postdoctoral Fellow of Zhuoyue Program in control theory and control engineering with Beihang University, Beijing, China. His current research interests include multi-agent systems, robust control, nonlinear control, formation control, and tail-sitter aircraft control. Yan Wan is currently a Distinguished University Professor in the Electrical Engineering Department at the University of Texas at Arlington. She received her Ph.D. degree in Electrical Engineering from Washington State University in 2009 and then did postdoctoral training at the University of California, Santa Barbara. Her research interests lie in the modeling, evaluation, and control of large-scale dynamical networks, cyber-physical systems, stochastic networks, and their applications to smart grids, urban aerial mobility, autonomous driving, robot networking, and air traffic management. She is an appointed member of the Board of Governors of the IEEE Control Systems Society (CSS) and serves in the Conference Editorial Board and Technology Conference Editorial Board. She is also a technical committee member of AIAA Intelligent Systems, IEEE CSS Nonlinear Systems and Control, and IEEE CSS Networks and Communication Systems. Frank L. Lewis is a Member of National Academy of Inventors, a Fellow of IEEE/IFAC/U.K/Institute of Measurement & Control, PE Texas, U.K. Chartered Engineer. He is a UTA Distinguished Scholar Professor, UTA Distinguished Teaching Professor, and Moncrief-O'Donnell Chair at the University of Texas at Arlington Research Institute. He received the bachelor’s degree in physics/EE in 1971 and the M.S.E.E. degree in 1971 from Rice University, Houston, TX, USA, the M.S. degree in aeronautical engineering in 1977 from the University of West Florida, Pensacola, FL, USA, and the Ph.D. degree in electrical engineering in 1981 from the Georgia Institute of Technology, Atlanta, GA, USA. He works in feedback control, intelligent systems, cooperative control systems, and nonlinear systems. He is author of 7 U.S. patents, numerous journal special issues, journal papers, and 20 books, including Optimal Control, Aircraft Control, Optimal Estimation, and Robot Manipulator Control which are used as university textbooks worldwide. He received the Fulbright Research Award, NSF Research Initiation Grant, ASEE Terman Award, Int. Neural Network Soc. Gabor Award, U.K. Inst Measurement & Control Honeywell Field Engineering Medal, IEEE Computational Intelligence Society Neural Networks Pioneer Award, AIAA Intelligent Systems Award. Received Outstanding Service Award from Dallas IEEE Section, selected as Engineer of the year by Ft. Worth IEEE Section. Was listed in Ft. Worth Business Press Top 200 Leaders in Manufacturing. Texas Regents Outstanding Teaching Award 2013. Kimon P. Valavanis received the Diploma degree in electrical and electronic engineering from the National Technical University of Athens, Athens, Greece, in 1981, and the M.Sc. degree in electrical engineering and the Ph.D. degree in computer and systems engineering from Rensselaer Polytechnic Institute, Troy, NY, USA, in 1984 and 1986, respectively. He is currently a Professor and the Chair of the Electrical and Computer Engineering Department, and also the Acting Chair of the Computer Science Department, University of Denver, Denver, CO, USA. His current research interests include unmanned systems and distributed intelligence systems.


Best Sellers


Product Details
  • ISBN-13: 9781032150246
  • Publisher: Taylor & Francis Ltd
  • Publisher Imprint: CRC Press
  • Height: 234 mm
  • No of Pages: 130
  • Weight: 380 gr
  • ISBN-10: 1032150246
  • Publisher Date: 08 Oct 2024
  • Binding: Paperback
  • Language: English
  • Series Title: Automation and Control Engineering
  • Width: 156 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Robust Formation Control for Multiple Unmanned Aerial Vehicles: (Automation and Control Engineering)
Taylor & Francis Ltd -
Robust Formation Control for Multiple Unmanned Aerial Vehicles: (Automation and Control Engineering)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Robust Formation Control for Multiple Unmanned Aerial Vehicles: (Automation and Control Engineering)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!