Buy Hybrid Genetic Optimization for IC Chips Thermal Control
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer programming / software engineering > Programming and scripting languages: general > Hybrid Genetic Optimization for IC Chips Thermal Control: With MATLAB® Applications(Advances in Metaheuristics)
Hybrid Genetic Optimization for IC Chips Thermal Control: With MATLAB® Applications(Advances in Metaheuristics)

Hybrid Genetic Optimization for IC Chips Thermal Control: With MATLAB® Applications(Advances in Metaheuristics)


     0     
5
4
3
2
1



Available


X
About the Book

The continuous miniaturization of integrated circuit (IC) chips and the increase in the sleekness of the design of electronic components have led to the monumental rise of volumetric heat generation in electronic components. Hybrid Genetic Optimization for IC Chips Thermal Control: With MATLAB® Applications focuses on the detailed optimization strategy carried out to enhance the performance (temperature control) of the IC chips oriented at different positions on a switch-mode power supply (SMPS) board and cooled using air under various heat transfer modes. Seven asymmetric protruding IC chips mounted at different positions on an SMPS board are considered in the present study that is supplied with non-uniform heat fluxes. Key Features: Provides guidance on performance enhancement and reliability of IC chips Provides a detailed hybrid optimization strategy for the optimal arrangement of IC chips on a board The MATLAB program for the hybrid optimization strategy along with its stability analysis is carried out in a detailed manner Enables thermal design engineers to identify the positioning of IC chips on the board to increase their reliability and working cycle

Table of Contents:
ACKNOWLEDGEMENT NOMENCLATURE ABBREVIATIONS CHAPTER 1 INTRODUCTION 1.1 Need for electronic cooling 1.2 Printed circuit board (PCB) and Integrated circuit (IC) chips 1.3 Various cooling techniques 1.3.1 Air cooling 1.3.2 Phase change material based cooling 1.4 Optimization in heat transfer CHAPTER 2 STATE OF THE ART STUDIES IN ELECTRONIC COOLING 2.1 Introduction 2.2 Studies pertaining to cooling of discrete IC chips 2.2.1 Studies relevant to Natural convection 2.2.2 Studies relevant to forced and mixed convection cooling of discrete IC chips 2.2.3 Studies pertaining to the phase change material (PCM) based cooling of discrete IC chips 2.3 Summary of the literature survey 2.4 Scope for development 2.5 Different parameters considered for the study CHAPTER 3 EXPERIMENTAL FACILITY 3.1 Introduction 3.2 Selection of the IC chips and the SMPS board 3.3 Design of the IC chip and SMPS Board 3.3.1 Design of IC Chips 3.3.2 Design of the SMPS (Substrate) board 3.3.2.1 Substrate board design to carry out the laminar forced convection experiments 3.3.2.2 Substrate board design to carry out the experiments using the PCM filled mini-channels 3.4 Experimental setup and Instrumentation 3.4.1 Instruments used for the experimental analysis 3.4.1.1 DC power source 3.4.1.2 Hot wire anemometer 3.4.1.3 Temperature data-logger 3.4.1.4 Digital multimeter 3.4.1.5 Kapton tape 3.5 Experimental methodology 3.5.1 Procedure for conducting laminar forced convection steady-state experiments 3.5.2 Procedure for conducting transient experiments on the PCM filled mini-channels under the natural convection 3.6 Experimental calculations 3.6.1 Experimental calculations under laminar forced convection heat transfer mode 3.6.2 Experimental calculations for the PCM filled mini-channels under the natural convection heat transfer mode 3.7 Error analysis CHAPTER 4 HYBRID OPTIMIZATION STRATEGY FOR THE ARRANGEMENT OF IC CHIPS UNDER THE MIXED CONVECTION 4.1 Introduction 4.2 Non-dimensional geometrics distance parameter (λ) 4.3 Numerical framework 4.3.1 Governing equations 4.3.2 Boundary conditions 4.3.3 Grid independence study 4.4 Results and discussion 4.4.1 Maximum temperature excess variation of different configurations with λ 4.4.2 Temperature variation for the IC chips of the lower (λ = 0.25103) and the upper extreme (λ = 1.87025) configurations 4.4.3 Empirical correlation 4.5 Hybrid optimization strategy 4.5.1 Artificial neural network (ANN) 4.5.2 Genetic algorithm (GA) 4.5.3 Combination of ANN and GA 4.6 Conclusions CHAPTER 5 HYBRID OPTIMIZATION STRATEGY TO STUDY THE SUBSTRATE BOARD ORIENTATION EFFECT FOR THE COOLING OF THE IC CHIPS UNDER FORCED CONVECTION 5.1 Introduction. 5.2 Different IC chips combinations considered for the experimentation 5.3 Results and discussion 5.3.1 Temperature variation of the IC chips for different substrate board orientations 5.3.2 Temperature variation of IC chips for different air velocities 5.3.3 Maximum temperature variation of the configurations for different substrate board orientations 5.3.4 Variation of maximum heat transfer coefficient of the configurations for different substrate board orientations 5.4 Empirical Correlation 5.4.1 Correlation for θ in terms of λ 5.4.2 Correlation for θi in terms of the IC chip positions on the substrate board (Z), non-dimensional board orientation (φ) and IC chip sizes (S) 5.4.3 Correlation for Nusselt number of the IC chips in terms of fluid Reynolds number and IC chip’s size 5.5 Hybrid optimization strategy to identify the optimal board orientation and optimal configuration of the IC chips 5.5.1 Artificial Neural Network 5.5.2 Genetic algorithm 5.5.3 Combination of ANN and GA 5.6 Numerical investigation for the cooling of the seven asymmetric IC chips under the laminar forced convection 5.6.1 Computational model with governing equations 5.6.2 Boundary conditions 5.6.3 Mesh independence study 5.7 Numerical analysis for the IC chip’s temperature under the different substrate board orientations 5.8 Conclusions CHAPTER 6 NUMERICAL AND EXPERIMENTAL INVESTIGATIONS OF PARAFFIN WAX-BASED MINI-CHANNELS FOR THE COOLING OF IC CHIPS. 6.1 Introduction 6.2 Experiment set-up 6.3 Results and discussion 6.3.1 Temperature variation of IC chips without PCM based mini-channels (WPMC) 6.3.2 Temperature variation of IC chips for case 1 with and without the PCM based mini-channels 6.3.3 Temperature variation of IC chips for case 4 with and without the PCM based mini-channels 6.3.4 Temperature variation of IC chips for all cases with PCM based mini-channels (PMC) 6.3.5 Convective heat transfer coefficient variation for all cases with PCM based mini- channels (PMC) 6.3.6 Correlation 6.4 Numerical simulation of PCM based mini-channels under natural convection 6.5 Conclusions CHAPTER 7 CONCLUSIONS AND SCOPE FOR FUTURE WORK 7.1 Introduction 7.2 Major conclusions of the present study 7.3 Scope for future work REFERENCES Appendix A MATLAB programme for generating all the possible configurations for the arrangement of 7 non-identical rectangular IC chips on a substrate board. Appendix B Calculation of Mixed convection considered for numerical study Appendix C Sample calculation for non-dimensional temperature (θ) and Fourier number (Fo) Index

About the Author :
Dr. Mathew V. K. holds a Ph.D. degree in Thermal Management Systems from Vellore Institute of Technology, Vellore, India; M.Tech in Heat Power from the University of Pune, India. He is working in the field of heat transfer enhancement using active and passive cooling. His research interest includes Active and passive safety, Crash energy management, Battery thermal management system, Computational fluid dynamics, Heat transfer, Numerical methods, Optimization using different algorithms (Genetic algorithm, Artificial neural network), and proficient in Experimental techniques. Dr. Tapano Kumar Hotta is currently working as an Associate Professor in the School of Mechanical Engineering, VIT Vellore, India. He has a Ph.D. degree in Mechanical Engineering from IIT Madras in the area of Electronic cooling. His area of research in a broad sense includes; Active and passive cooling of electronic devices, Heat transfer enhancement, Optimization of thermal systems, Thermal comfort modeling, etc. Dr. Hotta has about 13 years of teaching cum research experience and has around 40 publications to his credit in journals and conferences of international repute. He has guided more than 30 undergraduates, a dozen of postgraduates, and 2 doctorate students for their project work. He has also published 2 patents. He is a member of the editorial board and reviewer for various international journals and conferences related to heat transfer.


Best Sellers


Product Details
  • ISBN-13: 9781032036854
  • Publisher: Taylor & Francis Ltd
  • Binding: Paperback
  • Language: English
  • Series Title: Advances in Metaheuristics
  • Weight: 340 gr
  • ISBN-10: 1032036850
  • Publisher Date: 08 Oct 2024
  • Height: 234 mm
  • No of Pages: 156
  • Sub Title: With MATLAB® Applications
  • Width: 156 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Hybrid Genetic Optimization for IC Chips Thermal Control: With MATLAB® Applications(Advances in Metaheuristics)
Taylor & Francis Ltd -
Hybrid Genetic Optimization for IC Chips Thermal Control: With MATLAB® Applications(Advances in Metaheuristics)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Hybrid Genetic Optimization for IC Chips Thermal Control: With MATLAB® Applications(Advances in Metaheuristics)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!