Large-Scale Data Analytics with Python and Spark - Bookswagon
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Reference > Research and information: general > Data science and analysis: general > Large-Scale Data Analytics with Python and Spark: A Hands-on Guide to Implementing Machine Learning Solutions
Large-Scale Data Analytics with Python and Spark: A Hands-on Guide to Implementing Machine Learning Solutions

Large-Scale Data Analytics with Python and Spark: A Hands-on Guide to Implementing Machine Learning Solutions


     0     
5
4
3
2
1



Available


X
About the Book

Based on the authors' extensive teaching experience, this hands-on graduate-level textbook teaches how to carry out large-scale data analytics and design machine learning solutions for big data. With a focus on fundamentals, this extensively class-tested textbook walks students through key principles and paradigms for working with large-scale data, frameworks for large-scale data analytics (Hadoop, Spark), and explains how to implement machine learning to exploit big data. It is unique in covering the principles that aspiring data scientists need to know, without detail that can overwhelm. Real-world examples, hands-on coding exercises and labs combine with exceptionally clear explanations to maximize student engagement. Well-defined learning objectives, exercises with online solutions for instructors, lecture slides, and an accompanying suite of lab exercises of increasing difficulty in Jupyter Notebooks offer a coherent and convenient teaching package. An ideal teaching resource for courses on large-scale data analytics with machine learning in computer/data science departments.

Table of Contents:
Part I. Understanding and Dealing with Big Data: 1. Introduction; 2. MapReduce; Part II. Big Data Frameworks: 3. Hadoop; 4. Spark; 5. Spark SQL and DataFrames; Part III. Machine Learning for Big Data: 6. Machine Learning with Spark; 7. Machine Learning for Big Data; 8. Implementing Classical Methods: k-means and Linear Regression; 9. Advanced Examples: Semi-supervised, Ensembles, Deep Learning Model Deployment.

About the Author :
Isaac Triguero is Distinguished Senior Researcher at the Department of Computer Science and Artificial Intelligence, University of Granada, and Associate Professor of Data Science at the School of Computer Science of the University of Nottingham. He won the 2019 School of Computer Science – University of Nottingham Award for Teaching. Mikel Galar is Associate Professor of Computer Science and Artificial Intelligence at the Department of Statistics, Computer Science and Mathematics, Public University of Navarre. He is a co-founder of Neuraptic AI and won the 2020 Excellence in Teaching Award of the Public University of Navarre.

Review :
'With the growing ubiquity of large and complex datasets, MapReduce and Spark's dataflow programming models have become mission-critical skills for data scientists, data engineers, and ML engineers. Triguero and Galar leverage their extensive teaching experience on this topic to deliver this tour de force deep dive into both the technical concepts and programming knowhow needed for such modern large-scale data analytics. They interleave intuitive exposition of the concepts and examples from data engineering and classical ML pipelines with well-thought-out hands-on code and outputs. This book not only shows how all this knowledge is useful in practice today but also sets up the reader to be able to successfully 'generalize' to future workloads.' Arun Kumar, University of California, San Diego


Best Sellers


Product Details
  • ISBN-13: 9781009318259
  • Publisher: Cambridge University Press
  • Publisher Imprint: Cambridge University Press
  • Height: 245 mm
  • No of Pages: 422
  • Returnable: N
  • Spine Width: 20 mm
  • Weight: 822 gr
  • ISBN-10: 100931825X
  • Publisher Date: 23 Nov 2023
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Returnable: N
  • Sub Title: A Hands-on Guide to Implementing Machine Learning Solutions
  • Width: 170 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Large-Scale Data Analytics with Python and Spark: A Hands-on Guide to Implementing Machine Learning Solutions
Cambridge University Press -
Large-Scale Data Analytics with Python and Spark: A Hands-on Guide to Implementing Machine Learning Solutions
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Large-Scale Data Analytics with Python and Spark: A Hands-on Guide to Implementing Machine Learning Solutions

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!