Adversarial Learning and Secure AI
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer security > Adversarial Learning and Secure AI
Adversarial Learning and Secure AI

Adversarial Learning and Secure AI


     0     
5
4
3
2
1



Available


X
About the Book

Providing a logical framework for student learning, this is the first textbook on adversarial learning. It introduces vulnerabilities of deep learning, then demonstrates methods for defending against attacks and making AI generally more robust. To help students connect theory with practice, it explains and evaluates attack-and-defense scenarios alongside real-world examples. Feasible, hands-on student projects, which increase in difficulty throughout the book, give students practical experience and help to improve their Python and PyTorch skills. Book chapters conclude with questions that can be used for classroom discussions. In addition to deep neural networks, students will also learn about logistic regression, naïve Bayes classifiers, and support vector machines. Written for senior undergraduate and first-year graduate courses, the book offers a window into research methods and current challenges. Online resources include lecture slides and image files for instructors, and software for early course projects for students.

Table of Contents:
Contents; Preface; Notation; 1. Overview of adversarial learning; 2. Deep learning background; 3. Basics of detection and mixture models; 4. Test-time evasion attacks (adversarial inputs); 5. Backdoors and before/during training defenses; 6. Post-training reverse-engineering defense (PT-RED) Against Imperceptible Backdoors; 7. Post-training reverse-engineering defense (PT-RED) against patch-incorporated backdoors; 8. Transfer post-training reverse-engineering defense (T-PT-RED) against backdoors; 9. Universal post-training backdoor defenses; 10. Test-time detection of backdoor triggers; 11. Backdoors for 3D point cloud (PC) classifiers; 12. Robust deep regression and active learning; 13. Error generic data poisoning defense; 14. Reverse-engineering attacks (REAs) on classifiers; Appendix. Support Vector Machines (SVMs); References; Index.

About the Author :
David J. Miller is Professor of Electrical Engineering at the Pennsylvania State University. Zhen Xiang is a post-doctoral research associate in Computer Science at the University of Illinois, Urbana-Champaign. George Kesidis is Professor of Computer Science and Engineering, and of Electrical Engineering, at the Pennsylvania State University.

Review :
'This textbook is one of the first major efforts to systematically examine adversarial machine learning. It clearly outlines the most common types of attacks on machine learning/AI, and defenses, with rigorous yet practical discussions. I would highly recommend it to any instructor or machine learning student who seeks to understand how to make machine learning more robust and secure.' Carlee Joe-Wong, Carnegie Mellon University 'This is a clear and timely introduction to the vital topic of adversarial learning. As leading international experts, the authors provide an accessible explanation of the foundational principles and then deliver a nuanced and extensive survey of recent attack and defense strategies. Multiple suggested projects allow the book to serve as the core of a graduate course.' Mark Coates, McGill University 'Remarkably comprehensive, this book explores the realm of adversarial learning, revealing the vulnerabilities and defenses associated with deep learning. With a mix of theoretical insights and practical projects, the book challenges the misconceptions about the robustness of Deep Neural Networks, offering strategies to fortify them. It is well suited for students and professionals with basic calculus, linear algebra, and probability knowledge, and provides foundational background on deep learning and statistical modeling. A must-read for practitioners in the machine learning field, this book is a good guide to understanding adversarial learning, the evolving landscape of defenses, and attacks.' Ferdinando Fioretto, Syracuse University 'In a field that is moving at break-neck speed, this book provides a strong foundation for anyone interested in joining the fray.' Amir Rahmati, Stony Brook


Best Sellers


Product Details
  • ISBN-13: 9781009315678
  • Publisher: Cambridge University Press
  • Publisher Imprint: Cambridge University Press
  • Height: 251 mm
  • No of Pages: 350
  • Returnable: N
  • Spine Width: 23 mm
  • Width: 174 mm
  • ISBN-10: 1009315676
  • Publisher Date: 31 Aug 2023
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Returnable: N
  • Weight: 860 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Adversarial Learning and Secure AI
Cambridge University Press -
Adversarial Learning and Secure AI
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Adversarial Learning and Secure AI

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!