Data Science in Context
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Databases > Data Science in Context: Foundations, Challenges, Opportunities
Data Science in Context: Foundations, Challenges, Opportunities

Data Science in Context: Foundations, Challenges, Opportunities


     0     
5
4
3
2
1



Available


X
About the Book

Data science is the foundation of our modern world. It underlies applications used by billions of people every day, providing new tools, forms of entertainment, economic growth, and potential solutions to difficult, complex problems. These opportunities come with significant societal consequences, raising fundamental questions about issues such as data quality, fairness, privacy, and causation. In this book, four leading experts convey the excitement and promise of data science and examine the major challenges in gaining its benefits and mitigating its harms. They offer frameworks for critically evaluating the ingredients and the ethical considerations needed to apply data science productively, illustrated by extensive application examples. The authors' far-ranging exploration of these complex issues will stimulate data science practitioners and students, as well as humanists, social scientists, scientists, and policy makers, to study and debate how data science can be used more effectively and more ethically to better our world.

Table of Contents:
Introduction; Part I. Data Science: 1. Foundations of data science; 2. Data science is transdisciplinary; 3. A framework for ethical considerations; Recap of Part I – Data Science; Part II. Applying Data Science: 4. Data science applications: six examples; 5. The analysis rubric; 6. Applying the analysis rubric; 7. A principlist approach to ethical considerations; Recap of Part II – Transitioning from Examples and Learnings to Challenges; Part III. Challenges in Applying Data Science: 8. Tractable data; 9. Building and deploying models; 10. Dependability; 11. Understandability; 12. Setting the right objectives; 13. Toleration of failures; 14. Ethical, legal, and societal challenges; Recap of Part III – Challenges in Applying Data Science; Part IV. Addressing Concerns: 15. Societal concerns; 16. Education and intelligent discourse; 17. Regulation; 18. Research and development; 19. Quality and ethical governance; Recap of Part IV – Addressing Concerns: 20. Concluding thoughts; Appendix. Summary of recommendations from Part IV; About the authors; References; Index.

About the Author :
Alfred Z. Spector is a technologist and research leader. His career has led him from innovation in large scale, networked computing systems (at Stanford, CMU, and his company, Transarc) to broad research leadership: first leading IBM Software Research and then Google Research. Following Google, he was the CTO at Two Sigma Investments, and he is presently a Visiting Scholar at MIT. In addition to his managerial career, Dr. Spector lectured widely on the growing importance of computer science across all disciplines (CS+X) and on the Societal Implications of Data Science. He is a fellow of the ACM, IEEE, and the American Academy of Arts and Sciences, and a member of the National Academy of Engineering. Dr. Spector won the 2001 IEEE Kanai Award for Distributed Computing, was co-awarded the 2016 ACM Software Systems Award, and was a Phi Beta Kappa Visiting Scholar. He received a Ph.D. in Computer Science from Stanford and an A.B. in Applied Mathematics from Harvard. Peter Norvig is a Distinguished Education Fellow at Stanford's Human-Centered Artificial Intelligence Institute and a researcher at Google; previously he directed Google's core search algorithms group and Google's research group. He has taught at the University of Southern California, Stanford University, and the University of California at Berkeley, from which he received a Ph.D. in 1986 and the distinguished alumni award in 2006. He was co-teacher of an Artificial Intelligence class that signed up 160,000 students, helping to kick off the current round of massive open online classes. His books include Artificial Intelligence: A Modern Approach (the leading textbook in the field) and Paradigms of AI Programming: Case Studies in Common Lisp. He is also the author of the Gettysburg Powerpoint Presentation and the world's longest palindromic sentence. He is a fellow of the AAAI, ACM, California Academy of Science and American Academy of Arts & Sciences. Chris Wiggins is an Associate Professor of Applied Mathematics at Columbia University and the Chief Data Scientist at The New York Times. At Columbia he is a founding member of the executive committee of the Data Science Institute, and of the Department of Applied Physics and Applied Mathematics as well as the Department of Systems Biology, and is affiliated faculty in Statistics. He is a co-founder and co-organizer of hackNY (http: //hackNY.org), a non-profit which since 2010 has organized once a semester student hackathons, and the hackNY Fellows Program, a structured summer internship at NYC startups. Prior to joining the faculty at Columbia he was a Courant Instructor at NYU (1998-2001) and earned his Ph.D. at Princeton University (1993-1998) in theoretical physics. He is a Fellow of the American Physical Society and is a recipient of Columbia's Avanessians Diversity Award.

Review :
'This book provides an important view of the contextual landscape for data science: the context of related fields of statistics, visualization, optimization, and computer science; the context of a broad range of applications, together with an analysis rubric; the context of societal impacts from dependability, to understandability, to ethical and legal questions. These are critically important factors for any practitioner of data science to understand, and for others to be aware of in evaluating the use of data science.' Daniel Huttenlocher, Massachusetts Institute of Technology 'As data science becomes a crucial element in momentous decisions of war and peace, as well as commerce and innovation, it is vital that it rests on sound foundations. This book is an important step forward in that regard, illuminating the context in which data science is practiced. It is essential reading for both data scientists and decision makers.' James Arroyo, Ditchley Foundation 'Data science touches every aspect of our modern lives. This book digs into the practical, legal, and ethical challenges that result. It is the only book that's comprehensive in its consideration of the thorny issues arising from the broad application and unprecedented growth of data science. If you do data science, you should read this book.' Michael D. Smith, Harvard University 'This book will be essential reading for all data scientists and data teams. The self-contained text explains what students and practitioners need to know to use data science more effectively and ethically. It draws on the authors' years of experience and offers practical insights into data science that complement other books that focus on specific techniques. I'll be referencing and recommending this book for many years to come.' Ben Lorica, Gradient Flow


Best Sellers


Product Details
  • ISBN-13: 9781009272209
  • Publisher: Cambridge University Press
  • Publisher Imprint: Cambridge University Press
  • Height: 250 mm
  • No of Pages: 334
  • Returnable: N
  • Spine Width: 22 mm
  • Weight: 720 gr
  • ISBN-10: 1009272209
  • Publisher Date: 20 Oct 2022
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Returnable: N
  • Sub Title: Foundations, Challenges, Opportunities
  • Width: 174 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Data Science in Context: Foundations, Challenges, Opportunities
Cambridge University Press -
Data Science in Context: Foundations, Challenges, Opportunities
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Data Science in Context: Foundations, Challenges, Opportunities

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!