Buy Mathematical Analysis of Machine Learning Algorithms
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer science > Artificial intelligence > Machine learning > Mathematical Analysis of Machine Learning Algorithms
Mathematical Analysis of Machine Learning Algorithms

Mathematical Analysis of Machine Learning Algorithms


     0     
5
4
3
2
1



International Edition


X
About the Book

The mathematical theory of machine learning not only explains the current algorithms but can also motivate principled approaches for the future. This self-contained textbook introduces students and researchers of AI to the main mathematical techniques used to analyze machine learning algorithms, with motivations and applications. Topics covered include the analysis of supervised learning algorithms in the iid setting, the analysis of neural networks (e.g. neural tangent kernel and mean-field analysis), and the analysis of machine learning algorithms in the sequential decision setting (e.g. online learning, bandit problems, and reinforcement learning). Students will learn the basic mathematical tools used in the theoretical analysis of these machine learning problems and how to apply them to the analysis of various concrete algorithms. This textbook is perfect for readers who have some background knowledge of basic machine learning methods, but want to gain sufficient technical knowledge to understand research papers in theoretical machine learning.

Table of Contents:
1. Introduction; 2. Basic probability inequalities for sums of independent random variables; 3. Uniform convergence and generalization analysis; 4. Empirical covering number analysis and symmetrization; 5. Covering number estimates; 6. Rademacher complexity and concentration inequalities; 7. Algorithmic stability analysis; 8. Model selection; 9. Analysis of kernel methods; 10. Additive and sparse models; 11. Analysis of neural networks; 12. Lower bounds and minimax analysis; 13. Probability inequalities for sequential random variables; 14. Basic concepts of online learning; 15. Online aggregation and second order algorithms; 16. Multi-armed bandits; 17. Contextual bandits; 18. Reinforcement learning; A. Basics of convex analysis; B. f-Divergence of probability measures; References; Author index; Subject index.

About the Author :
Tong Zhang is Chair Professor of Computer Science and Mathematics at the Hong Kong University of Science and Technology, where his research focuses on machine learning, big data, and their applications. A Fellow of the IEEE, the American Statistical Association, and the Institute of Mathematical Statistics, Zhang has served as Chair or Area chair at major machine learning conferences such as NeurIPS, ICML, and COLT, and he has been an associate editor for several top machine learning publications including PAMI, JMLR, and 'Machine Learning.'

Review :
'This graduate-level text gives a thorough, rigorous and up-to-date treatment of the main mathematical tools that have been developed for the analysis and design of machine learning methods. It is ideal for a graduate class, and the exercises at the end of each chapter make it suitable for self-study. An excellent addition to the literature from one of the leading researchers in this area, it is sure to become a classic.' Peter Bartlett, University of California, Berkeley 'This book showcases the breadth and depth of mathematical ideas in learning theory. The author has masterfully synthesized techniques from the many disciplines that have contributed to this subject, and presented them in an accessible format that will be appreciated by both newcomers and experts alike. Readers will learn the tools-of-the-trade needed to make sense of the research literature and to express new ideas with clarity and precision.' Daniel Hsu, Columbia University 'Tong Zhang shares in this book his deep and broad knowledge of machine learning, writing an impressively comprehensive and up-to-date reference text, providing a rigorous and rather advanced treatment of the most important topics and approaches in the mathematical study of machine learning. As an authoritative reference and introduction, his book will be a great asset to the field.' Robert Schapire, Microsoft Research 'This book gives a systematic treatment of the modern mathematical techniques that are commonly used in the design and analysis of machine learning algorithms. Written by a key contributor to the field, it is a unique resource for graduate students and researchers seeking to gain a deep understanding of the theory of machine learning.' Shai Shalev-Shwartz, Hebrew University of Jerusalem 'Impressively comprehensive, exceptionally well written, effectively organized and presented, [this book] is an ideal addition to personal, professional, college, and university library Computer Science collections and Programming Algorithms & Pattern Recognition curriculum studies lists.' James A. Cox, Midwest Book Review '… the new textbook Mathematical Analysis of Machine Learning Algorithms by Professor Tong Zhang is a tour de force.… The book stands as a monumental achievement, and Zhang deserves high praise for this work … an indispensable resource for graduate students, researchers, and anyone seeking a rigorous understanding of machine learning.' Chinmay Hegde, SIGACT News 'This book provides an excellent introduction to theoretical aspects of machine learning for those who are willing to learn and appreciate the mathematical complexity of the underlying algorithms and statistics.' Physics Book Reviews


Best Sellers


Product Details
  • ISBN-13: 9781009098380
  • Publisher: Cambridge University Press
  • Publisher Imprint: Cambridge University Press
  • Height: 263 mm
  • No of Pages: 468
  • Returnable: N
  • Spine Width: 30 mm
  • Width: 185 mm
  • ISBN-10: 1009098381
  • Publisher Date: 10 Aug 2023
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Returnable: N
  • Weight: 1086 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Mathematical Analysis of Machine Learning Algorithms
Cambridge University Press -
Mathematical Analysis of Machine Learning Algorithms
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Mathematical Analysis of Machine Learning Algorithms

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!