Molecular Dynamics for Materials Modeling - Bookswagon UAE
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Mechanical engineering and materials > Materials science > Molecular Dynamics for Materials Modeling: A Practical Approach Using LAMMPS Platform
Molecular Dynamics for Materials Modeling: A Practical Approach Using LAMMPS Platform

Molecular Dynamics for Materials Modeling: A Practical Approach Using LAMMPS Platform


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

The book focuses on the correlation of mechanical behavior with structural evaluation and the underlying mechanisms through molecular dynamics (MD) techniques using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) platform. It provides representative examples of deformation behavior studies carried out using MD simulations through the LAMMPS platform, which provide contributory research findings toward the field of material technology. It also gives a general idea about the architecture of the coding used in LAMMPS and basic information about the syntax. Features: Provides a fundamental understanding of molecular dynamics simulation through LAMMPS Includes training on how to write LAMMPS input file scripts Discusses basics of molecular dynamics and fundamentals of nanoscale deformation behavior Explores molecular statics and Monte Carlo simulation technique Reviews key syntax implemented during simulation runs in LAMMPS, along with their functions This book is focused on researchers and graduate students in materials science, metallurgy, and mechanical engineering.

Table of Contents:
Chapter 1. Atomistic simulation: A theoretical understanding. 1.1 Introduction. 1.2 General steps of MD simulation. 1.3 Interatomic potentials. 1.4 Concept of ensembles. 1.5 Boundary conditions. 1.6 Architecture of LAMMPS input file. 1.7 Post-processing analysis using LAMMPS. Chapter 2. Physical properties evaluation by MD simulation. 2.1 Preparation of nanoscale samples. 2.2 Physical properties in nanoscale metals. 2.3 Evaluation of mechanical properties. 2.4 Evaluation of thermal properties. Chapter 3. Nanoscale simulation of deformation behavior. 3.1 Scale-dependent deformation behavior. 3.2 Deformation simulation of dynamic loading. 3.3 Deformation simulation of static loading. 3.4 Deformation simulation of impact and cyclic loading. 3.5 Example LAMMPS input codes. Chapter 4. MD simulation of metallic glass. 4.1 Introduction to Metallic glasses. 4.2 Importance of MD in MG studies. 4.3 Designing metallic glasses using MD simulation in LAMMPS. 4.4 Voronoi tessellation method. 4.5 Evaluation of physical properties of MG. 4.6 Example LAMMPS input codes. Chapter 5. Grain boundary engineering using MD simulation. 5.1 Interfaces in metals and their importance. 5.2 Types of grain boundaries and interfaces. 5.3 Grain boundary engineering. 5.4 Designing and analyzing metallic GBs using LAMMPS. 5.5 Example LAMMPS input codes. Chapter 6. MD simulation of composite material. 6.1 Importance of nanoscale composite structure. 6.2 MD simulation of deformation behavior in metal matric composites. 6.3 Designing of composite materials using LAMMPS. 6.4 Evaluation of deformation behavior and mechanical properties. 6.5 Example LAMMPS input code. Chapter 7. Material processing using MD simulation: Nanoscale rolling process. 7.1 Material processing of nanostructured materials. 7.2 Nanoscale rolling process. 7.3 Design of rolling process using LAMMPS. 7.4 Example LAMMPS input code. References.

About the Author :
Snehanshu Pal is presently working as an associate professor in the Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, West Bengal, India. He previously worked at the National Institute of Technology (NIT), Rourkela, India for nine years (2014-2023). He has served as a postdoctoral fellow in the Department of Materials Science and Engineering, the Pennsylvania State University. He received his PhD in metallurgical and materials engineering from the Indian Institute of Technology, Kharagpur, India, in 2013. A-passionate researcher, critical thinker, and committed academician, Snehanshu Pal currently holds an assistant professor position at the Metallurgical and Materials Engineering Department of NIT, Rourkela, since 2014. His research focuses on the study of the deformation behavior of nanostructured material using MD simulation and modeling of metallurgical processes. He is eager to teach and pass on knowledge and is a highly motivated, reliable, dedicated, innovative, and student-oriented teacher in the elds of mechanical metallurgy, metallurgical thermodynamics, and atomistic modeling of materials. Snehanshu Pal leads the Computational Materials Engineering and Process Modeling Research Group at NIT, Rourkela, a group dedicated to realizing the underlying physics behind the mechanical behavior of materials and simulating metallurgical processes (http://www.snehanshuresearchlab.org). He has published more than 100 high-impact research articles in internationally reputed journals. He has supervised three doctoral theses and several master’s theses. He is an investigator of numerous sponsored research projects and industrial projects. He has active research collaborations with esteemed universities across the globe (such as the University of Florida, the University of Manitoba, Université Lille, and the National Academy of Science of Belarus). In addition, Snehanshu Pal is associated with various esteemed technical and scientific societies such as the Indian Institute of Metals and Indian Institute of Engineers. K. Vijay Reddy is a postdoctoral researcher in KU Leuven, Belgium, working primarily in the eld of computational materials engineering. He did his PhD at the Department of Metallurgical and Materials Engineering, National Institute of Technology (NIT), Rourkela, India, working on nanoscale behavior of materials and design of nano-processing techniques using atomistic simulation techniques. His doctoral research focuses on investigating the material processing of nanoscale metallic systems using molecular dynamics simulation processes. Apart from the doctoral research eld, he has worked on multiple research projects and published more than 30 research articles in high-quality journals over the years. He has demonstrated a strong command of computational skills, has been involved in developing many in-house simulation codes, and has gathered vast knowledge from all of his research experiences. Together with Dr. Snehanshu Pal, he has also been associated with various collaborations with esteemed universities across the globe (such as the University of Florida, University of Manitoba, and University of California Irvine). Apart from atomistic simulations, he has also worked with industrial collaborator Dr. Chandan Halder (manager, Mishra Dhatu Nigam Limited) in the eld of microstructure modeling. Vijay Reddy is an integral part of the Computational Materials Engineering and Process Modeling Research Group that is led by Dr. Snehanshu Pal at the National Institute of Technology, Rourkela, a group dedicated to realizing the underlying physics behind the mechanical behavior and processing of materials and simulating metallurgical processes (http://www.snehanshuresearchlab.org).


Best Sellers


Product Details
  • ISBN-13: 9781003859413
  • Publisher: Taylor & Francis eBooks
  • Publisher Imprint: Taylor & Francis Ltd
  • Language: English
  • ISBN-10: 1003859410
  • Publisher Date: 27 Mar 2024
  • Binding: Digital (delivered electronically)
  • Sub Title: A Practical Approach Using LAMMPS Platform


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Molecular Dynamics for Materials Modeling: A Practical Approach Using LAMMPS Platform
Taylor & Francis eBooks -
Molecular Dynamics for Materials Modeling: A Practical Approach Using LAMMPS Platform
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Molecular Dynamics for Materials Modeling: A Practical Approach Using LAMMPS Platform

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!