Machine Learning for Complex and Unmanned Systems
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer science > Artificial intelligence > Machine learning > Machine Learning for Complex and Unmanned Systems
Machine Learning for Complex and Unmanned Systems

Machine Learning for Complex and Unmanned Systems


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This book highlights applications that include machine learning methods to enhance new developments in complex and unmanned systems. The contents are organized from the applications requiring few methods to the ones combining different methods and discussing their development and hardware/software implementation. The book includes two parts: the first one collects machine learning applications in complex systems, mainly discussing developments highlighting their modeling and simulation, and hardware implementation. The second part collects applications of machine learning in unmanned systems including optimization and case studies in submarines, drones, and robots. The chapters discuss miscellaneous applications required by both complex and unmanned systems, in the areas of artificial intelligence, cryptography, embedded hardware, electronics, the Internet of Things, and healthcare. Each chapter provides guidelines and details of different methods that can be reproduced in hardware/software and discusses future research. Features Provides details of applications using machine learning methods to solve real problems in engineering Discusses new developments in the areas of complex and unmanned systems Includes details of hardware/software implementation of machine learning methods Includes examples of applications of different machine learning methods for future lines for research in the hot topic areas of submarines, drones, robots, cryptography, electronics, healthcare, and the Internet of Things This book can be used by graduate students, industrial and academic professionals to examine real case studies in applying machine learning in the areas of modeling, simulation, and optimization of complex systems, cryptography, electronics, healthcare, control systems, Internet of Things, security, and unmanned systems such as submarines, drones, and robots.

Table of Contents:
Section 1: Machine Learning for Complex Systems 1. Echo State Networks to Solve Classification Tasks 2. Continual Learning for Camera Localisation 3. Classifying Ornamental Fish Using Deep Learning Algorithms and Edge Computing Devices 4. Power Amplifier Modeling Comparison for Highly and Sparse Nonlinear Behavior Based on Regression Tree,Random Forest, and CNN for Wideband Systems 5. Models and Methods for Anomaly Detection in Video Surveillance 6. Deep Learning to Classify Pulmonary Infectious Diseases 7. Memristor-based Ring Oscillators as Alternatives for Reliable Physical Unclonable Functions Section 2: Machine Learning for Unmanned Systems 8. Past and Future Data to Train an Artificial Pilot for Autonomous Drone Racing 9. Optimization of UAV Flight Controllers for Trajectory Tracking by Metaheuristics 10. Development of a Synthetic Dataset Using Aerial Navigation to Validate a Texture Classification Model 11. Coverage Analysis in Air-Ground Communications Under Random Disturbances in an Unmanned Aerial Vehicle 12. A Review of Noise Production and Mitigation in UAVs 13. An Overview of NeRF Methods for Aerial Robotics 14. Warehouse Inspection Using Autonomous Drones and Spatial AI 15.Cognitive Dynamic Systems for Cyber-Physical Engineering 16. EEG-Based Motor and Imaginary Movement Classification: ML Approach

About the Author :
Esteban Tlelo Cuautle received a B.Sc. degree from Instituto Tecnológico de Puebla (ITP) México in 1993. He then received both M.Sc. and Ph.D. degrees from Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), México in 1995 and 2000, respectively. During 1995-2000 he was with the electronics-engineering department at ITP. In 2001 he was appointed as Professor-Researcher at INAOE. He has been Visiting Researcher in the department of Electrical Engineering at University of California Riverside, USA (2009-2010), in the department of Computer Science at CINVESTAV, México City, México (2016-2017), and Visiting Lecturer at University of Electronic Science and Technology of China (UESTC, Chengdu 2014-2019). He has authored 5 books, edited 12 books and more than 300 works published in book chapters, international journals and conferences. He is member in the National System for Researchers (SNI-CONACyT-México). His research interests include integrated circuit design, optimization by metaheuristics, fractional-order chaotic systems, artificial intelligence, security in Internet of Things, and analog/RF and mixed-signal design automation tools. Jose Martinez-Carranza is a Full-Time Principal Researcher B (equivalent to Associate Professor) in the Computer Science Department at the Instituto Nacional de Astrofisica Optica y Electronica (INAOE). In 2015, he was awarded the Newton Advanced Fellowship granted by the Newton Fund and the Royal Society in the UK. Currently, he holds an Honorary Senior Research Fellowship in the Computer Science Department at the University of Bristol in the UK. He leads a research team that has won international competitions such as 1st Place in the IEEE IROS 2017 Autonomous Drone Racing competition and 1st Place in the Regional Prize of the OpenCV AI Competition 2021. He also served as General Chair of the International Micro Air Vehicle conference, the IMAV 2021. In 2022, he joined the editorial board of the journal "Unmanned Systems". His research focuses on vision-based methods for robotics with applications in autonomous and intelligent drones. Everardo Inzunza-Gonzalez received his Ph.D. degree in Electrical Sciences from UABC Mexico in 2013, and the M.Sc. degree in Electronics and Telecommunications from the Scientific Research and Advanced Studies Center of Ensenada (CICESE) in 2001, the B.Sc. degree in Electronics Engineering from Culiacan Institute of Technology, in 1999. He is currently a full-time Professor and Researcher of Electronics Engineering at Universidad Autónoma de Baja California (UABC-FIAD) Mexico. He is currently a reviewer for several prestigious journals. His research interest includes the Internet of things, Network Security, Data Science, Artificial Intelligence, Machine-Learning and Deep-Learning, Wireless Communication, Image Processing, WSN, Pattern Recognition, Wearable Devices, Embedded Systems, FPGA, SoC, Microcontrollers, Chaotic encryption, Image encryption, Image enhancement, Image processing, Chaotic oscillators and Applied Cryptography. Enrique Efren García-Guerrero studied physics engineering at the University Autonomous Metropolitana, Mexico, and received the PhD and M.Sc. degree in optical physics from the Scientic Research and Advanced Studies Center of Ensenada (CICESE) Mexico. He has been with the Facultad de Ingeniería, Arquitectura y Diseño of the Universidad Autónoma de Baja California (UABC-FIAD) Mexico since 2004. His current research interest includes Image enhancement, embedded systems, chaotic cryptography, artificial intelligence, machine-learning, deep-learning, neural networks, digital image processing and optical systems.


Best Sellers


Product Details
  • ISBN-13: 9781003827436
  • Publisher: Taylor & Francis eBooks
  • Publisher Imprint: Taylor & Francis Ltd
  • Language: English
  • ISBN-10: 1003827438
  • Publisher Date: 21 Feb 2024
  • Binding: Digital (delivered electronically)


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Machine Learning for Complex and Unmanned Systems
Taylor & Francis eBooks -
Machine Learning for Complex and Unmanned Systems
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Machine Learning for Complex and Unmanned Systems

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!